Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T00:28:09.690Z Has data issue: false hasContentIssue false

Determination of porosity of platy materials using slit-shaped and bevelled pores

Published online by Cambridge University Press:  09 July 2018

J. F. Delon
Affiliation:
Centre de Recherche sur la Valorisation des Minerais de l'ENSG et UA 235 du CNRS, B.P. 40, 54501 Vandoeuvre Cédex, France
O. Lietard
Affiliation:
Centre de Recherche sur la Valorisation des Minerais de l'ENSG et UA 235 du CNRS, B.P. 40, 54501 Vandoeuvre Cédex, France
J. M. Cases
Affiliation:
Centre de Recherche sur la Valorisation des Minerais de l'ENSG et UA 235 du CNRS, B.P. 40, 54501 Vandoeuvre Cédex, France
J. Yvon
Affiliation:
Centre de Recherche sur la Valorisation des Minerais de l'ENSG et UA 235 du CNRS, B.P. 40, 54501 Vandoeuvre Cédex, France

Abstract

The pore-size distribution of kaolinite has been studied by nitrogen desorption isotherms. A new method is proposed which takes account of the fact that the intraparticle or ‘internal’ area is small in comparison with the total surface area. The crystals form dihedral angles with one another, and the irregularities of the crystal edges form a slit-shaped internal pore system. When the nitrogen pressure increases, the condensed volume in the pores grows by an amount greater than predicted by de Boer's law. This excess is shown to result from capillary condensation in bevelled pores and this accounts for the main part of the intercrystalline or ‘external’ porosity. A model of condensation in bevelled capillaries has been developed and its range of validity determined.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951) The determination of pore volume and area distribution in porous substances. Computations of nitrogen isotherms. J. Am. Chem. Soc. 73, 373380.CrossRefGoogle Scholar
Bates, T.F. & Hincklay, D.M. (1959) Mineralogy and petrology of the kaolin clays of the Piedmont and coastal plains region of the southeastern United State. Progress Report. 01/06/1958-01/06/1959. The Pennsylvania State University.Google Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 62, 17231732.CrossRefGoogle Scholar
Broekhoff, J.C.P. & de Boer, H.H. (1968) Studies on pore system in catalysts. XI. Pore distribution calculation from the adsorption branch of a nitrogen adsorption isotherm. J. Catal. 10, 153165.CrossRefGoogle Scholar
Broekhoff, J.C.P. & Linsen, B.G. (1970) Studies on pore systems in adsorbents and catalysts. Pp. 162 in: Physical and Chemical Aspects of Adsorbents and Catalysts (Linsen, B.G., editor). Academic Press, London & New York.Google Scholar
Cases, J.M., Lietard, O., Yvon, J. & Delon, J.F. (1982) Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bull Mineral. 105, 439455.Google Scholar
Delon, J.F. & Dellyes, R. (1967) Calcul du spectre de porosité des minéraux phylliteux. C. R. Acad. Soc. Paris 265D, 1661-1664.Google Scholar
Delon, J.F. (1970) Contribution à l'étude de la surface spécifique et de la microporosité des minéraux et des roches. Dr. Etat Thesis, Nancy, France, 187 pp.Google Scholar
Innes, W.B. (1957) Use of a parallel plate model in calculation of pore size distribution. Anal Chem. 29, 10691073.CrossRefGoogle Scholar
Lietard, O. (1977) Contribution à l'étude des propriétés physicochimiques, eristallographiques et morphologiques des kaolins. Dr. Etat Thesis, Nancy, France, 347 pp.Google Scholar
Lietard, O., Yvon, J., Delon, J.F., Mercier, R. & Cases, J.M. (1980) Determination of the basal and lateral surfaces of kaolins: Variation with types of crystalline defects. Pp. 558582 in: Fine Particles Processing (Somasundaran, P., editor), Vol. 1. AIME, New York.Google Scholar
Linsen, B.G. & Van Den, Heuvel (1967) Pp. 10251053 in: The Gas Solid Interface (Flood, E.A., editor), vol. 2. Marcel Dekker, New York.Google Scholar
Lippens, B.C., Linsen, B.G. & de Boer, J.H. (1964) Studies on pore systems in catalysts. I. The adsorption of nitrogen, apparatus and calculation. J. Catal 3, 3237.CrossRefGoogle Scholar
Radjy, F. & Sellevold, E.S. (1972) A phenomenological theory for the t-method of pore structure analysis. J. Coll. Interface Sci. 39, 367388.CrossRefGoogle Scholar
Rouquerol, E. (1966) Contribution à l'étude par adsorption gazeuse de la texture des solides divisés. Application à I'alumine, à la glucine et à différents gels et oxydes. Dr Etat Thesis, Paris, France, 90 pages. (Also: Rapport CEA-R 2947. Centre d'Etudes Nucléaires de Saclay, France.)Google Scholar
Weiss, A., Thielepape, W., Gõring, G., Ritrer, W. & Schaffer, H. (1963) Zur kenntnis von Hydrazine-—Kaolinit. Z. Anorg. Allgem Chem. 320, 183204.CrossRefGoogle Scholar
Wheeler, A. (1951) Pp. 250326 in: Advances in Catalysis (Frankenbourg, W.G., Komaresky, V.I. and Rideal, E.K., editors), vol. 3. Academic Press. New York.Google Scholar
Wheeler, A. (1954) Reaction rates and selectivity in catalyst pores. Pp. 105165 in: Catalysis (Emmet, P.H., editor), vol. 2. Reinold Publishing Corp.Google Scholar