Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T16:44:37.009Z Has data issue: false hasContentIssue false

Contribution of multivariate analysis to the correlation of some properties of kaolin with its mineralogical and chemical composition

Published online by Cambridge University Press:  09 July 2018

E. Galan
Affiliation:
Departamento de Cristalografía, Mineralogía y Q. Agrícola, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain
P. Aparicio
Affiliation:
Departamento de Cristalografía, Mineralogía y Q. Agrícola, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain
I. Gonzalez
Affiliation:
Departamento de Cristalografía, Mineralogía y Q. Agrícola, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain
A. Miras
Affiliation:
Departamento de Cristalografía, Mineralogía y Q. Agrícola, Universidad de Sevilla, Apdo. 553, 41071 Sevilla, Spain

Abstract

According to multivariate analysis, the following were established (a) kaolinite crystallinity index (KCI) values determined by XRD are highly correlated to one another and seemingly influenced by kaolin impurities; (b) kaolin minerals are concentrated mainly in the fractions <4 µm; (c) the kaolin surface area as determined by the BET (nitrogen adsorption) method is more markedly affected by kaolin impurities than by kaolin minerals themselves; (d) BET surfaces increase when kaolinite crystallinity decreases; (e) brightness is inversely correlated with kaolin impurities; (f) the more ordered the kaolinite and the greater the proportion in the <4 µm fraction of the kaolin, the greater the brightness; and (g) KCI values are particle size-distribution dependent for sedimentary-residual kaolins. The correlations obtained were better when kaolins were selected according to their origin because the kaolin minerals and their impurities, particle size-distribution and texture were more alike. The industrial properties of kaolin can not be predicted from other basic properties such as mineralogy, KCI, etc., because they are intricately related to one another.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aparicio, P. (1996) Determinación del orden-desorden de la caolinita pot DRX e 1R en caolines y rocas caolinlferas: lnfiuencia de la mineralogla en la exactitud y reproducibilidad de las medidas. PhD thesis, Univ. Sevilla, Spain.Google Scholar
Brindley, G.W. & Kurtosy, S.S. (1961) Quantitative determination of kaolinite by X-ray diffraction. Am. Miner. 46, 12051215.Google Scholar
Bristow, C.M. (1993) The genesis of the China Clays of South-West England. A Multistage story. Pp. 171-203 in: Kaolin, Genesis and Utilization. (Murray, H.H., Bundy, W. & Harvey, C., editors), Special Publications n° 1, The Clay Minerals Society.Google Scholar
Bundy, W.M. (1993) The diverse industrial applications of kaolin. Pp. 43–73 in: Kaolin, Genesis and Utilization. (Murray, H.H., Bundy, W. & Harvey, C., editors), Special Publications n° 1, The Clay Minerals Society.Google Scholar
Bundy, W.M., Johns, W.D. & Murray, H.H. (1965) Physico chemical properties of kaolinite and relationship to paper coating quality. T.A.P.P.I. 48, 688696.Google Scholar
Cases, J.M., Cunin, P., Grillet, Y., Poisignon, C. & Yvon, J. (1986) Method of analysing morphology of kaolinites: relations between crystallographic and morphological properties. Clay Miner. 21, 55–68.Google Scholar
Eddleston, M. (1979) A study of the methods of determining the crystallinity of kaolinite in red tropical soils and its contribution to the understanding of chemical transformation associated with profile formation. PhD thesis Univ. Leeds, UK.Google Scholar
Galám, E. & MartinVivaldi, J.L. (1973) Genetic classification of the Spanish kaolin deposits and their typology. Proc. Int. Clay Conf., Madrid, 737-761.Google Scholar
Galán, E., Mattias, P.P. & Galvan, J. (1977) Correlation between crystallinity size, genesis and age of some spanish kaolinites. K-8, 8 pp. in: Proc 8th lnter Kaolin Sym. and Meeting on Alunite, Madrid-Rome (Galán, E., editor). Ministerio de Industria y Energia, Madrid.Google Scholar
Galán, E., Aparicio, P., Gonzalez, I. & LaIglesia, A. (1994) Influence of associated components of kaolin on the degree of disorder of kaolinite as determined by XRD. Geological Carpathica - Clays, 45, 5675.Google Scholar
Galán, E., Mesa, J.M., Miras, A. & Sanchez, C. (1995) Multivariate analysis as a tool for genetic approaches in clay mineralogy. Proc. 10th lnt. Clay Conf., Adelaide, 323-330.Google Scholar
Galán, E., Aparicio, P., Miras, A., Michailidis, K. & Tsirambides, A. (1996) Technical properties of compounded kaolin sample from Griva (Macedonia, Greece). AppL Clay Sci. 10, 477490.CrossRefGoogle Scholar
Gomes, C., Velho, J.A. & Delgado, H. (1990) Kaolin deposits of Portugal. Geoci∼ncias Rev. Univ. Aveiro, 5, 75-89.Google Scholar
Gomes, C., Velho, J.A. & Guimaraes, F. (1994) Kaolin deposit of Mevaiela (Angola) alteration product of anorthosite: assessment of kaolin potentialities for applications in paper. Appl. Clay Sci. 9, 97–106.Google Scholar
Hinckley, D. (1963) Variability in ‘crystallinity’ values among the kaolin deposits of the Coastal Plain of Georgia and South Carolina. Pp. 229-235 in: 11th Int. Conf. Clays Clay Miner. Google Scholar
IGME (Instituto Geolrgico y Minero de Espafia) (1976) Rocas industriales de Galicia: Caolines y Materiales Arcillosos. Ministerio de Industria, Madrid, 79 pp.Google Scholar
Johns, W.D. & Murray, H.H. (1959) Empirical crystallinity index for kaolinites. Bull. Geol. Soc. Am. 70, 1624.Google Scholar
Kerr, P.F. (1949) Reference Clay Minerals. A.P.I. Project 49.Google Scholar
Kühnel, R.A., VanHilten, D. & Roorde, H.J. (1974) The crystalIinity of minerals in alteration profiles: an example on goethite in laterite profiles. Geosciences, 1-8.Google Scholar
Liètard, O. (1977) Contribution a I’ ∼tude des propibtbs phisicochimiques, cristallographiques et morphologiques des kaolins. ThD thesis, Univ. Nancy, France.Google Scholar
Lombardi, G. & Mattias, P. (1977) Guidebook for the excursions in Italy. Pp. 11–28 in: VII Int. Kaolin Sym. and Meeting on Alunite (Lombardi, G., Mattias, P. & Uras, I., editors).Google Scholar
Lombardi, G., Russell, J.D. & Keller, W.D. (1987) Compositional structural variations in the size fractions of a sedimentary and a hydrothermal kaolin. Clays Clay Miner. 35, 321335.Google Scholar
Lyons, S.C. (1966) Clay. T.A.P.P.L Monographs, 30, (Itagemeyer, , editor), 57-124.Google Scholar
Mátyás, E. (1979) Geological environment genesis and mineralogical characteristics of clay mineral deposits in the Tokaj Mountains. In: Guide to Excursion in the Tokaj-Mountains, Xth Kaolin Symposium. Google Scholar
MartinPozas, J.M. (1975) An∼ilisis cuantitativo de fuses cristalinas por DRX. In: (J. Saja). Metodo de Debye-Scherrer. ICE, Universidad de Valladolid. Google Scholar
MartinVivaldi, J.L., Pozzuoli, A., Mattias, P. & GalinHuertos, E. (1972) The swelling of layer minerals: I - Interaction with DMSO and NMFA. Pp. 455-468 in: Preprints Int. Clay Conf. 1972. Google Scholar
Michailidis, K., Tsirambides, A. & Tsamantouridis, P. (1993) Kaolin weathering crust on gabbroic rocks at Griva, Macedonia, Greece.Appl. Clay Sci. 8, 19–36.Google Scholar
Morandi, N., Rossi, P.L. & Tranne, C.A. (1992) Excursion guide-book of Vulcano and Lipari. In: Mediterranean Clay Meeting, MCM “92, Lipari (Italy). Google Scholar
Murray, H.H. (1976) Clay. T.A.P.P.I. Monographs, 38, 69109, (Itagemeyer, , editor).Google Scholar
Murray, H.H. & Lyons, S.C. (1956) Correlation of papercoating quality with degree of crystal perfection of kaolinite. Clays Clay Miner. 4, 3140.Google Scholar
Patterson, C.H. & Murray, H.H. (1975) Clays. Pp. 519-585 in: Industrial Minerals and Rocks 4thed. (Lefond, , editor), AIME, New York.Google Scholar
RuizCruz, M.D., MorenoReal, I. & Gatfin, E. (1995) Kaolinite-dickite transformation by tectonic deformation in the Campo de Gibraltar area (S. Spain). EUROCLAY ‘95 Book of Abstracts, 336-337.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierre Shale. Geol. Survey. Prof. Paper, 391-C.Google Scholar
Stoch, L. (1974) Mineraly Ilaste (Clay Minerals), pp. 186-193. Geological Publishers, Warsaw.Google Scholar
VanOlphen, H. & Fripiat, J.J. (1979) Data Handbook for Clay Materials and other Non-metallic Minerals. Pregamon Press, Oxford.Google Scholar
Velho, J.A. & Gomes, C. (1991) Characterization of Portuguese kaolins for the paper industry: Beneficiation through new delamination techniques. Appl. Clay Sci. 6, 155170.Google Scholar
Weiss, A., Thielepape, W., Göring, G., Ritter, W. & Schaffer, H. (1963) Zur kenntnis yon hydrazinekaolinitic. Z. Anong. Allegem Chem. 320, 183204.Google Scholar
Yvon, J., Cases, J.M., Liètard, O., Garin, P. & Lhote, F. (1980) Influence des proprietes des charges kaoliniques sur les performances des caoutchoucs naturels charges. Clay Miner. 15, 351368.Google Scholar