Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T13:12:41.482Z Has data issue: false hasContentIssue false

Compositional Variations in Smectites: Part I. Alteration of Intermediate Volcanic Rocks. A Case Study from Milos Island, Greece

Published online by Cambridge University Press:  09 July 2018

G. Christidis
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester LEI 7RH, UK
A. C. Dunham
Affiliation:
Department of Geology, University of Leicester, University Road, Leicester LEI 7RH, UK

Abstract

The chemistry of smectites from some bentonite deposits derived from intermediate rocks has been examined by electron microprobe methods. A large variation in chemical composition within very short distances, principally controlled by a well-defined negative relationship between Si and A1, and between A1VI and Fe 3+ and A1VI and Mg has been observed. On the other hand, Mg does not vary systematically with either Si or Fe3+. In several bentonites beidellite coexists with montmorillonite and there is a compositional transition between the two smectite minerals, implying the existence of a possible solid-solution series. This transition occurs only when Cheto-type montmorillonites are present, being absent for Wyoming-type montmorillonites. No compositional transition between Wyoming-and Cheto-type montmorillonite was observed. It is believed that the compositional variations reflect initial chemical gradients originated during the devitrification of the volcanic glass, due to the migration of chemical components.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, A. & Brigaiti, M.F. (1985) Crystal chemical differences in Al-rich smectites as shown by multivariate analysis of variance and discriminant analysis. Clays Clay Miner. 33, 546558.CrossRefGoogle Scholar
Altaner, S.P. & Grim, R.E. (1990) Mineralogy, chemistry and diagenesis of tuffs in the Sucker Creek formation (Miocene), Eastern Oregon. Clays Clay Miner. 38, 561572.CrossRefGoogle Scholar
Altherr, R., Schliestedt, M., Okrusch, M., Seidel, E., Kreuzer, FI., Harre, W., Lenz, Ft., Wendt, I. & Wagner, G.A. (1979) Geochronology of high-pressure rocks on Siphnos (Cyclades, Greece). Contrib. Mineral. Petrol. 70, 245255.CrossRefGoogle Scholar
Angelier, J., Cantagrel, J.-M. & Vilminot, J.-C. (1977) Neotectonique cassante et volcanisme plio-quaternaire dans Fare egeen interne: I’isle de Milos (Grece). Bull. Soc. geol. France (7). t.XlX, 1, 119123.CrossRefGoogle Scholar
Banfield, J.F. & Eggleton, R.A. (1990) Analytical transmission electron microscope studies of plagioclase, muscovite, and K-feldspar weathering. Clays Clay Miner. 38, 7789.CrossRefGoogle Scholar
Bouchet, A., Proust, D., Meunier, A. & Beaufort, D. (1988) High-charge to low-charge smectite reaction in hydrothermal alteration processes. Clay Miner. 23, 133146.CrossRefGoogle Scholar
Brigatti, M.F. & Poppi, L. (1981) A mathematical model to distinguish the members of the dioctahedral smectite series. Clay Miner. 16, 8189.CrossRefGoogle Scholar
Byrne, P.J.S. (1954) Some observations on montmorillonite-organic complexes. Clays Clay Miner. 2, 241253.CrossRefGoogle Scholar
Christidis, G. (1989) Mineralogy, physical and chemical properties of the bentonite deposits o f Milos island, Greece. MSc thesis, Univ. Hull, UK.Google Scholar
Dunham, A.C. & Wilkinson, F.C.F. (1978) Accuracy, precision and detection limits of energy dispersive electron- microprobe analyses of silicates. X-ray Spectrometry 7, 5056.CrossRefGoogle Scholar
Elizea, J.M. & Murray, H.H. (1990) Variation in the mineralogical, chemical and physical properties of the Cretaceous Clay Spur bentonite in Wyoming and Montana. Appl. Clay Sci. 5, 229248.CrossRefGoogle Scholar
Fyticas, M., Giulliani, O., Innocenti, F., Marinelli, G. & Mazzuoli, R. (1976) Geochronological data on recent magmatism of the Aegean Sea. Tectonophysics 31, T29-T34.Google Scholar
Fyticas, M. (1977) Geological and geothermal study of Milos island. PhD thesis, Univ. Salonica, Greece.Google Scholar
Fyticas, M., Innocenti, F., Kolios, N., Manetti, P., Mazzuoli, R., Poli, G., Rita, F. & Villari, L. (1986) Volcanology and petrology of volcanic products from the island of Milos and neighbouring islets. J. Volcanol. Geotherm. Res. 28, 297317.CrossRefGoogle Scholar
Goodman, B.A., Nadeau, P.H. & Chadwick, J. (1988) Evidence for the multiphase nature of bentonites from Mossbauer and EPR spectroscopy. Clay Miner. 23, 147159.CrossRefGoogle Scholar
Goulding, K.W.T. & Talibudeen, O. (1980) Heterogeneity of cation-exchange sites for K-Ca exchange in aluminosilicates. J. Coll. Interf. Sci. 78, 1524.CrossRefGoogle Scholar
Grim, R.E. & Kulbicki, G. (1961) Montmorillonite: High temperature reactions and classification. Am. Miner. 46, 13291369.Google Scholar
Grim, R.E. & Gūven, N. (1978) Bentonites. Geology, Mineralogy, Properties and Uses. pp. 143-155. Elsevier, Amsterdam.Google Scholar
Gūven, N. (1988) Smectite. Pp. 497-559 in: Hydrous Phyllosilicates (Exclusive o f Micas) (S.W. Bailey, editor). Reviews in Mineralogy, vol. 19. Mineralogical Society of America, Washington, DC.Google Scholar
Hoffmann, C. & Keller, J. (1979) Xenoliths of lawsonite-ferroglaucophane rocks from a Quaternary volcano of Milos (Aegean Sea, Greece). Lithos 12, 209219.CrossRefGoogle Scholar
Koster, H.M. (1981) The crystal structure of 2:1 layer silicates. Proc. Int. Clay Conf. Pavia-Bologna, 4171. Google Scholar
Kornprobst, J., Kienast, J.-R. & Vilminot, J.-C. (1979) The high-pressure assemblages at Milos, Greece. Contrib. Mineral. Petrol. 69, 4963.CrossRefGoogle Scholar
Lagaly, G. (1981) Characterization of clays by organic compounds. Clay Miner. 16, 121.CrossRefGoogle Scholar
Lagaly, G. & Weiss, A. (1975) The layer charge of smectitic layer silicates. Proc. Int. Clay Conf. Mexico, 157172.Google Scholar
Lagaly, G., Fernandez-Gonzalez, M. & Weiss, A. (1976) Problems in layer-charge determination of montmorillonites. Clay Miner. 11, 173187.CrossRefGoogle Scholar
Lear, P.R. & Stucki, J.W. (1985) Role of structural hydrogen in the reduction and re-oxidation of iron in nontronite. Clays Clay Miner. 33, 539545.CrossRefGoogle Scholar
Lim, C.H. & Jackson, M.L. (1986) Expandable phyllosilicate reactions with lithium on heating. Clays Clay Miner. 34, 346352.CrossRefGoogle Scholar
Luttig, G. & Wiedenbein, F. (1990) Bentonite and related deposits. World economic significance and situation in Greece. Abstracts 5th Congr. Geol. Soc. Greece, Thessaloniki. Google Scholar
McAtee, J.L. (1958a) Heterogeneity in montmorillonite. Clays Clay Miner. 5, 279288.CrossRefGoogle Scholar
McAtee, J.L. (1958b) Random interstratification in organophilic bentonites. Clays Clay Miner. 5, 308317.CrossRefGoogle Scholar
Nadeau, P.H., Farmer, V.C., McHardy, W.J. & Bain, D.C. (1985) Compositional variations of the Unterrupsroth beidellite. Am. Miner. 70, 10041010.Google Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1-128 in: Chemistry of Clays and Clay Minerals (A.C.D. Newman, editor). Mineralogical Society, London. Google Scholar
Norrish, K. (1954) The swelling of montmorillonite. Disc. Faraday Soc. 18, 120134.CrossRefGoogle Scholar
Ramseyer, K. & Boles, J.R. (1986) Mixed-layer illite/smectite minerals in Tertiary sandstones and shales, San Joaquin Basin, California. Clays Clay Miner. 34, 115124.CrossRefGoogle Scholar
Schultz, L.G. (1969) Lithium and potassium adsorption, dehydroxylation temperature and structural water content of aluminous smectites. Clays Clay Miner. 17, 115149.CrossRefGoogle Scholar
Shiraki, R., Sakai, H., Endoh, M. & Kishima, N. (1987) Experimental studies on rhyolite-and andesite-seawater interactions at 300°C and 1000 bars. Geochemical J. 21, 139148.CrossRefGoogle Scholar
Shiraki, R. & Iiyama, T. (1990) Na-K ion exchange reaction between rhyolitic glass and (Na,K)Cl aqueous solution under hydrothermal conditions. Geochim. Cosmochim. Acta 54, 29232931.CrossRefGoogle Scholar
Singh, Balwant & Gilkes, R.J. (1991) A potassium-rich beidellite from a laterite pallid zone in Western Australia. Clay Miner. 26, 233244.CrossRefGoogle Scholar
Sonder, R.A. (1924/25) Zur Geologie und Petrographie der Inselgruppe von Milos. Z. Volcanologie 8, 181237.Google Scholar
Stucki, J.W., Low, P.F., Roth, C.B. & Golden, D.C. (1984) Effects of oxidation state of octahedral iron on clay swelling. Clays Clay Miner. 32, 357362.CrossRefGoogle Scholar
Stul, M.S. & Mortier, W.J. (1974) The heterogeneity of the charge density in montmorillonites. Clays Clay Miner. 22, 391396.CrossRefGoogle Scholar
Talibudeen, O. & Goulding, K.W.T. (1983) Charge heterogeneity in smectites. Clays Clay Miner. 31, 3742.CrossRefGoogle Scholar
Tettenhorst, R. & Johns, W.D. (1966) Interstratification in montmorillonite. Clays Clay Miner. 25, 8593.Google Scholar
Velde, B. (1984) Electron microprobe analysis of clay minerals. Clay Miner. 19, 243247.CrossRefGoogle Scholar
Velde, B. (1985) Clay Minerals. A Physico-Chemical Explanation of their Occurrence, pp. 38-13 and 104-145. Elsevier, Amsterdam. Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry o f Clay Minerals, pp. 55-77. Elsevier, Amsterdam.Google Scholar
Wetzenstein, W. (1969) Die Bentonitlagerstatten im Osteil der Insel Milos/Griechenland und ihre mineralogische Zussamensetzung. PhD thesis, Univ. Stuttgart, Germany.Google Scholar
Wetzenstein, W. (1972) Die Bentonitlagerstatten im Osteil der Insel Milos und ihre mineralogische Zussamenset­zung. Bull. Geol. Soc. Greece 9, 144171.Google Scholar
White, A.F. & Claasen H .C . (1980) Kinetic model for the short term dissolution of a rhyolitic glass. Chem. Geol. 28, 91109.CrossRefGoogle Scholar
White, A.F. (1983) Surface chemistry and dissolution kinetics of glassy rocks at 25°C. Geochim. Cosmochim. Acta 47, 805815.CrossRefGoogle Scholar
Wright, T.L. (1968) X-ray and optical study of alkali-feldspar: II. An X-ray method for determining the composition and structural state from measurement of 2d values for three reflections. Am. Miner. 53, 88104.Google Scholar
Yamada, FI., Nakazawa, H., Yoshioka, K. & Fujita, T. (1991) Smectites in the montmorillonite-beidellite series. Clay Miner. 26, 359369.CrossRefGoogle Scholar
Zielinski, R.A. (1982) The mobility of uranium and other elements during alteration of rhyolite ash to montmorillonite: A case study in the Troublesome Formation, Colorado, USA. Chem. Geol. 35, 185204.CrossRefGoogle Scholar