Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T03:39:17.315Z Has data issue: false hasContentIssue false

Clay-lipid nanohybrids: towards influenza vaccines and beyond

Published online by Cambridge University Press:  02 January 2018

Bernd Wicklein*
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
Margarita Darder
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
Pilar Aranda
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
María Angeles Martín Del Burgo
Affiliation:
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
Gustavo Del Real
Affiliation:
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain
Mariano Esteban
Affiliation:
Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
Eduardo Ruiz-Hitzky
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
*

Abstract

The design of nanostructured materials based on natural components, such as clay minerals, offers new solutions to biomedical challenges such as more efficient and storage-stable vaccines. Clay-lipid hybrid materials have proved useful as adjuvants in influenza vaccines and with a possible projection to leishmaniasis vaccines and other pathogens. Self-assembly of phospholipid molecules on the surface of microfibrous sepiolite and lamellar Mg/Al layered double hydroxide renders a biocompatible lipid bilayer membrane that ensures non-degrading immobilization of proteins and other biological species including viral particles and DNA (deoxyribonucleic acid). Immunization tests in mice showed the superior immunogenicity of a clay-lipid-supported virus compared to a commercial aluminium hydroxide adjuvant.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was originally presented during the Euroclay 2015 conference held in July 2015 in Edinburgh, UK. This author was awarded the Martin Vivaldi Award.

References

Choy, J.H., Kwak, S.Y., Park, J.S., Jeong, Y.J. & Portier, J. (1999) Intercalative nanohybrids of nucleoside mono-phosphates and DNA in layered metal hydroxide. Journal of the American Chemical Society, 121, 13991400.Google Scholar
Clapp, T., Siebert, P., Chen, D. & Jones Braun, L. (2011) Vaccines with aluminium-containing adjuvants: optimizing vaccine efficacy and thermal stability. Journal of Pharmaceutical Sciences, 100, 388401.Google Scholar
Colombo, M., Carregal-Romero, S., Casula, M.F., Gutiérrez, L., Morales, M.P., Böhm, I.B., Heverhagen, J.T., Prosperi, D. & Parak, W.J. (2012) Biological applications of magnetic nanoparticles. Chemical Society Reviews, 41, 4306334.Google Scholar
Cordeiro, A.S., Alonso, M.J. & de la Fuente, M. (2015) Nanoengineering of vaccines using natural poly-saccharides. Biotechnology Advances, 33, 12791793.Google Scholar
De Temmerman, M.-L., Rejman, J., Demeester, J., Irvine, D.I., Gander, B. & De Smedt, S.C. (2011) Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discovery Today, 16, 569582.Google Scholar
Evans, D.G. & Slade, R.C.T. (2006) Structural aspects of layered double hydroxides. Pp. 187 in: Layered Double Hydroxides (D.G. Evans & X. Duan, editors). Springer, Berlin, Heidelberg.Google ScholarPubMed
Hubbell, I.A. & Chilkoti, A. (2012) Nanomaterials for drug delivery. Science, 337, 303305.CrossRefGoogle ScholarPubMed
Khanna, M., Sachin, S., Binod, K. & Rajput, R. (2014) Protective immunity based on the conserved hemagglutinin stalk domain and its prospects for universal influenza vaccine development. BioMed Research International, 2014, 546274.CrossRefGoogle Scholar
Kuroda, K., Hauser, C., Rott, R., Klenk, H.D. & Doerfler, W. (1986) Expression of the influenza virus haemagglu-tinin in insect cells by a baculovirus vector. EMBO Journal, 5, 13591365.CrossRefGoogle ScholarPubMed
Kuthati, Y., Kankala, R.K. & Lee, C.-H. (2015) Layered double hydroxide nanoparticles for biomedical applications: Current status and recent prospects. Applied Clay Science, 112-113, 100116.Google Scholar
Li, A., Qin, L., Wang, W., Zhu, R., Yu, Y., Liu, H. & Wang, S. (2011) The use of layered double hydroxides as DNA vaccine delivery vector for enhancement of anti-melanoma immune response. Biomaterials, 32, 469477.Google Scholar
Lycke, N. (2012) Recent progress in mucosal vaccine development: potential and limitations. Nature Reviews Immunology, 12, 592605.CrossRefGoogle ScholarPubMed
Medina, R.A. & García-Sastre, A. (2011) Influenza A viruses: new research developments. Nature Reviews Microbiology, 9, 590603.Google Scholar
Mody, K.T., Popat, A., Mahony, D., Cavallaro, A.S., Yu, C. & Mitter, N. (2013) Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale, 5, 51675179.Google Scholar
Moran, T.M., Park, H., Fernandez-Sesma, A. & Schulman, J.L. (1999) Th2 responses to inactivated influenza virus can be converted to Th1 responses and facilitate recovery from heterosubtypic virus infection. Journal Infectious Diseases, 180, 579585.CrossRefGoogle ScholarPubMed
Potter, M., editor. (1985) The BALB/c Mouse: Genetics and Immunology. Springer-Verlag, Berlin.Google Scholar
Ruiz-Hitzky, E. (2001) Molecular access to intracrystalline tunnels of sepiolite. Journal of Materials Chemistry, 11, 8691.CrossRefGoogle Scholar
Ruiz-Hitzky, E., Darder, M., Aranda, P., Martín del Burgo, M.A. & del Real, G. (2009) Bionanocomposites as new carriers for influenza vaccines. Advanced Materials, 21, 41674171.Google Scholar
Ruiz-Hitzky, E., Aranda, P., Darder, M. & Ogawa, M. (2011) Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom-up processes. Chemical Society Reviews, 40, 801828.CrossRefGoogle ScholarPubMed
Ruiz-Hitzky, E., Darder, M., Fernandes, F.M., Wicklein, B., Alcântara, A.C.S. & Aranda, P. (2013) Fibrous clays-based bionanocomposites. Progress in Polymer Science, 38, 13921414.CrossRefGoogle Scholar
Sánchez-Sampedro, L., Gómez, C.E., Mejías-Pérez, E., Sorzano, C.O. & Esteban, M. (2012) High quality long-term CD4+ and CD8+ effector memory populations stimulated by DNA-LACK/MVA-LACK regimen in Leishmania major BALB/C model of infection. PLoS ONE, 7, e38859.Google Scholar
Thyveetil, M.-A., Coveney, P.V., Greenwell, H.C. & Suter, J.L. (2008) Computer simulation study of the structural stability and materials properties of DNA-intercalated layered double hydroxides. Journal of the American Chemical Society, 130, 4742756.Google Scholar
Tomljenovic, L. & Shaw, C.A. (2011) Aluminium vaccine adjuvants: are they safe. Current Medical Chemistry, 18, 26302637.CrossRefGoogle ScholarPubMed
Wicklein, B., Darder, M., Aranda, P. & Ruiz-Hitzky, E. (2010) Bio-organoclays based on phospholipids as immobilisation hosts for biological species. Langmuir, 26, 52175225.Google Scholar
Wicklein, B., Darder, M., Aranda, P. & Ruiz-Hitzky, E. (2011) Phospholipid-sepiolite biomimetic interfaces for the immobilisation of enzymes. ACS Applied Materials & Interfaces, 3, 43394348.Google Scholar
Wicklein, B., Martín del Burgo, M.A., Yuste, M., Darder, M., Escrig Llavata, E., Aranda, P., Ortin, J., del Real, G. & Ruiz-Hitzky, E. (2012) Lipid-based bio-nanohy- brids for functional stabilisation of influenza vaccines. European Journal of Inorganic Chemistry, 5186-5191.CrossRefGoogle Scholar
Wicklein, B., Aranda, P., Ruiz-Hitzky, E. & Darder, M. (2013) Hierarchically structured bioactive foams based on polyvinyl alcohol—sepiolite nanocomposites. Journal of Materials Chemistry B, 1, 29112920.CrossRefGoogle ScholarPubMed
World Health Organization (2002) Manual on Animal Influenza Diagnosis and Surveillance, WHO/CDS/ CS/NCS/2002.5.Google Scholar
World Health Organization (2011) Global Influenza Surveillance Network. Manual for the laboratory diagnosis and virological surveillance of Influenza. http://apps.who.int/iris/bitstream/10665/44518/1/9789241548090_eng.pdf. Google Scholar
Xu, L., Liu, Y., Chen, Z., Li, W., Liu, Y., Wang, L., Liu, Y., Wu, X., Ji, Y., Zhao, Y. et al. (2012) Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Letters, 12, 20032012.Google Scholar
Zhao, L., Seth, A., Wibowo, N., Zhao, C.-X., Mitter, N., Yu, C. & Middelberg, A.P.J. (2014) Nanoparticle vaccines. Vaccine, 32, 327337.Google Scholar