Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T01:12:06.397Z Has data issue: false hasContentIssue false

Clay mineralogical evidence of near-equatorial Palaeocene–Eocene Thermal Maximum in Barmer Basin, India

Published online by Cambridge University Press:  09 August 2023

Rohit Kumar
Affiliation:
Department of Geology, University of Delhi, Delhi 110007, India
Abdul Hameed
Affiliation:
Department of Geology, University of Delhi, Delhi 110007, India
Pankaj Srivastava*
Affiliation:
Department of Geology, University of Delhi, Delhi 110007, India
*
Corresponding author: Pankaj Srivastava; Email: [email protected]

Abstract

The Palaeocene–Eocene Thermal Maximum (PETM) was a global extreme climatic event, but it is relatively unknown from lower latitudes or equatorial regions in comparison to mid- and high latitudes. The present study provides the first clay mineralogical evidence of the PETM and subsequent hyperthermal events in a near-equatorial region represented by the Akli Formation in the Barmer Basin, India. The 32 m-thick succession of the Akli Formation shows abrupt changes in smectite and kaolin abundances preceding, during and succeeding the PETM event. Within the studied section, the kaolin content increases from 5–8% pre-PETM to 30–35% during the PETM, and then again decreases to 5–6% during the post-PETM period. The smectite, however, is marked by a corresponding decrease and its transformation into kaolin in acid weathering conditions. The transformation of the smectite is first marked by hydroxy interlayering and then transformation into kaolin during the PETM. The transformation of smectite into kaolin also resulted in extensive precipitation of iron oxide in sediments. The clay mineralogical changes in the Palaeocene–Eocene transition sediments of the Akli Formation were caused by 3–5°C warming and a 25–50% increase in rainfall during the hyperthermal events. Unusually high charcoal (~20%) fragments during the Palaeocene–Eocene transition also suggest warming and widespread biomass burning during the PETM in the lower latitudes.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Hongping He

References

Anand, R., Gilkes, R., Armitage, T. & Hillyer, J. (1985) Feldspar weathering in lateritic saprolite. Clays and Clay Minerals, 33, 3143.CrossRefGoogle Scholar
Anderson, D. & Hawkes, H. (1958) Relative mobility of the common elements in weathering of some schist and granite areas. Geochimica et Cosmochimica Acta, 14, 204210.CrossRefGoogle Scholar
Arambourg, C. (1952) Les vertébrés fossiles des gisements de phosphates (Maroc-Algérie-Tunisie). Notes et Mémoires du Service géologique du Maroc, 92, 1372.Google Scholar
Barnhisel, R.I. & Bertsch, P.M. (1989) Chlorites and hydroxy-interlayered vermiculite and smectite. Minerals in Soil Environments, 1, 729788.Google Scholar
Bhattacharyya, T., Pal, D. & Deshpande, S. (1993) Genesis and transformation of minerals in the formation of red (Alfisols) and black (Inceptisols and Vertisols) soils on Deccan basalt in the Western Ghats, India. Journal of Soil Science, 44, 159171.CrossRefGoogle Scholar
Birkeland, P.W. (1999) Soils and Geomorphology, 3rd edition. Oxford University Press, New York, NY, USA, 448 pp.Google Scholar
Biswas, S. (1982) Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin. AAPG Bulletin, 66, 14971513.Google Scholar
Bladon, A.J., Clarke, S.M. & Burley, S.D. (2015) Complex rift geometries resulting from inheritance of pre-existing structures: Insights and regional implications from the Barmer Basin rift. Journal of Structural Geology, 71, 136154.CrossRefGoogle Scholar
Bolle, M.P. & Adatte, T. (2001) Palaeocene–Early Eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Minerals, 36, 249261.CrossRefGoogle Scholar
Cappetta, H. (2012) Handbook of Paleoichthyology, Vol. 3E: Chondrichthyes: Mesozoic and Cenozoic Elasmobranchii: Teeth. Verlag Dr. Friedrich Pfeil, Munich, Germany, 512 pp.Google Scholar
Carmichael, J.W., Inglis, G.N., Badger, M.P.S., Naafs, B.D.A., Behrooz, L., Remmelzwaal, S. et al. (2017) Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene–Eocene Thermal Maximum. Global Planetary Change, 157, 114138.CrossRefGoogle Scholar
Chaloner, W.G. (1968) The palaeoecology of fossil spores. Pp. 125138 in: Evolution and Environment (Drake, E.T., editor). Yale University Press, New Haven, CT, USA.Google Scholar
Chandran, P., Ray, S.K., Bhattacharyya, T., Srivastava, P., Krishnan, P. & Pal, D.K. (2005) Lateritic soils of Kerala, India: their mineralogy, genesis, and taxonomy. Australian Journal of Soil Research, 43, 839852.CrossRefGoogle Scholar
Chitale, D. & Gueven, N. (1989) Weathering of Deccan trap basalts in western India. Clay Research, 8, 6783.Google Scholar
Choudhury, T.R., Banerjee, S., Khanolkar, S., Saraswati, P.K. & Meena, S.S. (2021) Glauconite authigenesis during the onset of the Paleocene–Eocene Thermal Maximum: a case study from the Khuiala Formation in Jaisalmer Basin, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 571, 120.Google Scholar
Churchman, G. (2000) The alteration and formation of soil minerals by weathering. Pp. F3–F76 in: Handbook of Soil Science (Summer, M.E., editor). CRC Press, Boca Raton, FL, USA.Google Scholar
Clechenko, E.R., Kelly, D.C., Harrington, G.J. & Stiles, C.A. (2007) Terrestrial records of a regional weathering profile at the Paleocene–Eocene boundary in the Williston Basin of North Dakota. Geological Society of America Bulletin, 119, 428442.CrossRefGoogle Scholar
Collinson, M.E. (2001) Cainozoic ferns and their distribution. Brittonia, 53, 173235.CrossRefGoogle Scholar
Collinson, M.E., Hooker, J.J. & Groecke, D.R. (2003) Cobham lignite bed and penecontemporaneous macrofloras of southern England: a record of vegetation and fire across the Paleocene–Eocene Thermal Maximum, in: Causes and Consequences of Globally Warm Climates in the Early Paleogene. Special Paper Geological Society of America, 369, 333349.Google Scholar
Collinson, M.E., Steart, D., Scott, A., Glasspool, I. & Hooker, J. (2007). Episodic fire, runoff and deposition at the Palaeocene–Eocene boundary. Journal of the Geological Society, 164, 8797.CrossRefGoogle Scholar
Compton, P.M. (2009) The geology of the Barmer Basin, Rajasthan, India, and the origins of its major oil reservoir, the Fatehgarh Formation. Petroleum Geoscience, 15, 117130.CrossRefGoogle Scholar
Cramer, B.S. Aubry, M.P., Miller, K.G., Olsson, RK., Wright, J.D. & Kent, D.V. (1999) An exceptional chronologic, isotopic, and clay mineralogic record of the latest Paleocene thermal maximum, Bass River, NJ, ODP 174AX. Bulletin de la Société géologique de France, 170, 883897.Google Scholar
Crosdale, P.J., Sorokin, A.P., Woolfe, K.J. & Macdonald, D.I.M. (2002) Inertinite-rich Tertiary coals from the Zeya–Bureya Basin, far eastern Russia. International Journal of Coal Geology, 51, 215235.CrossRefGoogle Scholar
Cui, Y., Kump, L.R., Ridgwell, A.J., Charles, A.J., Junium, C.K., Diefendorf, A.F. et al. (2011) Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nature Geoscience, 4, 481485.CrossRefGoogle Scholar
Dasgupta, S. (1974) The stratigraphy of the west Rajasthan shelf. Pp. 219233 in: Proceedings of IV Colloquium on Indian Micropalaeontology and Stratigraphy (Venkatachala, B.S. and Sastri, V.V., editors). Institute of Petroleum Exploration, Oil and Natural Gas Commissions, Dehradun, Inda.Google Scholar
De Kimpe, C., Gastuche, M. & Brindley, G.W. (1961) Ionic coordination in alumino-silicic gels in relation to clay mineral formation. American Mineralogist, 46, 13701381.Google Scholar
Delvaux, B., Herbillon, A.J., Vielvoye, L. & Mestdagh, M. (1990) Surface properties and clay mineralogy of hydrated halloysitic soil clays. II: Evidence for the presence of halloysite/smectite (H/Sm) mixed-layer clays. Clay Minerals, 25, 141160.CrossRefGoogle Scholar
Dickens, G.R., O'Neil, J.R., Rea, D.K. & Owen, R.M. (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10, 965971.CrossRefGoogle Scholar
Dickens, G.R., Castillo, M.M. & Walker, J.C. (1997) A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25, 259262.2.3.CO;2>CrossRefGoogle ScholarPubMed
Dietel, J., Ufer, K., Kaufhold, S. & Dohrmann, R. (2019) Crystal structure model development for soil clay minerals – II. Quantification and characterization of hydroxy-interlayered smectite (HIS) using the Rietveld refinement technique. Geoderma, 347, 112.CrossRefGoogle Scholar
Do Campo, M., Bauluz, B., Del Papa, C., White, T., Yuste, A. & Mayayo, M.J. (2018) Evidence of cyclic climatic changes recorded in clay mineral assemblages from a continental Paleocene–Eocene sequence, northwestern Argentina. Sedimentary Geology, 368, 4457.CrossRefGoogle Scholar
Ebert, D.A. & Stehmann, M.F. (2013) Sharks, Batoids, and Chimaeras of the North Atlantic. FAO Species Catalogue for Fishery Purposes 7. FAO, Rome, Italy, 524 pp.Google Scholar
Eby, G.N. & Kochhar, N. (1990) Geochemistry and petrogenesis of the Malani Igneous Suite, peninsular India. Journal Geological Society of India, 36, 109130.Google Scholar
Elling, F.J., Gottschalk, J., Doeana, K.D., Kusch, S., Hurley, S.J. & Pearson, A. (2019) Archaeal lipid biomarker constraints on the Paleocene–Eocene carbon isotope excursion. Nature Communications, 10, 110.CrossRefGoogle ScholarPubMed
Frieling, J., Reichart, G.J., Middelburg, J.J., Röhl, U., Weterhold, T., Bohaty, S.M. & Sluijs, A. (2018) Tropical Atlantic climate and ecosystem regime shifts during the Paleocene–Eocene Thermal Maximum. Climate of the Past, 14, 3955.CrossRefGoogle Scholar
Frieling, J., Gebhardt, H., Huber, M., Adekeye, O.A., Akande, S.O., Reichart, G.J. et al. (2017) Extreme warmth and heat-stressed plankton in the tropics during the Paleocene–Eocene Thermal Maximum. Science Advances, 3, 19.CrossRefGoogle ScholarPubMed
Gawenda, P., Winkler, W., Schmitz, B. & Adatte, T. (1999) Climate and bioproductivity control on carbonate turbidite sedimentation (Paleocene to earliest Eocene, Gulf of Biscay, Zumaia, Spain). Journal of Sedimentary Research, 69, 12531261.CrossRefGoogle Scholar
Gibson, T.G., Bybell, L.M. & Owens, J.P. (1993) Latest Paleocene lithologic and biotic events in neritic deposits of southwestern New Jersey. Paleoceanography, 8, 495514.CrossRefGoogle Scholar
Gibson, T.G., Bybell, L.M. & Mason, D.B. (2000) Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin. Sedimentary Geology, 134, 6592.CrossRefGoogle Scholar
Gilkes, R. & Suddhiprakran, A. (1979) Biotite alteration in deeply weathered granite. I. Morphological, mineralogical, and chemical properties. Clays and Clay Minerals, 27, 349360.CrossRefGoogle Scholar
Gjems, O. (1967) Studies on clay minerals and clay-mineral formation in soil profiles in Scandinavia. Med. Nor. Skogforksvesen, 21, 303415.Google Scholar
Gombos, A.M. Jr, Powell, W.G. & Norton, I.O. (1995) The tectonic evolution of western India and its impact on hydrocarbon occurrences: an overview. Sedimentary Geology, 96, 119129.CrossRefGoogle Scholar
Gregory, L.C., Meert, J.G., Bingen, B., Pandit, M.K. & Torsvik, T.H. (2009) Paleomagnetism and geochronology of the Malani Igneous Suite, northwest India: implications for the configuration of Rodinia and the assembly of Gondwana. Precambrian Research, 170, 1326.CrossRefGoogle Scholar
Grim, R.E. & Güven, N. (1978) Bentonites: Geology, Minerlaogy, Properties and Uses. Developents in Sedimentlogy 24. Elsevier, Amsterdams, The Netherlands, 267 pp.Google Scholar
Gupta, S. & Kumar, K. (2019) Precursors of the Paleocene–Eocene Thermal Maximum (PETM) in the Subathu Group, NW sub-Himalaya, India. Journal of Asian Earth Sciences, 169, 2146.CrossRefGoogle Scholar
Handley, L., O'Halloran, A., Pearson, P.N., Hawkins, E., Nicholas, C.J., Schouten, S. et al. (2012) Changes in the hydrological cycle in tropical East Africa during the Paleocene–Eocene Thermal Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 329, 1021.CrossRefGoogle Scholar
Harriss, R.C. & Adams, J.A. (1966) Geochemical and mineralogical studies on the weathering of granitic rocks. American Journal of Science, 264, 146173.CrossRefGoogle Scholar
Herbillon, A., Frankart, R. & Vielvoye, L. (1981) An occurrence of interstratified kaolin–smectite minerals in a red-black soil toposequence. Clay Minerals, 16, 195201.CrossRefGoogle Scholar
Inglis, G.N., Bragg, F., Burls, N.J., Cramwinckel, M.J., Evans, D., Foster, G.L. et al. (2020). Global mean surface temperature and climate sensitivity of the Early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene. Climate of the Past, 16, 19531968.CrossRefGoogle Scholar
Jackson, M. (1975) Soil Chemical Analysis – Advanced Course, 10th printing. Published by author, Department of Soil Science, University of Wisconsin, Madison, WI, USA, 930 pp.Google Scholar
Jackson, M. (1979) Soil Chemical Analysis – Advanced Course, 11th printing. Published by author, Department of Soil Science, University of Wisconsin, Madison, WI, USA, 930 pp.Google Scholar
Jaramillo, C. (2002) Response of tropical vegetation to Paleogene warming. Paleobiology, 28, 222243.2.0.CO;2>CrossRefGoogle Scholar
Jaramillo, C., Ochoa, D., Contreras, L., Pagani, M., Carvajal-Ortiz, H., Pratt, L.M. et al. (2010) Effects of rapid global warming at the Paleocene–Eocene boundary on neotropical vegetation. Science, 330, 957961.CrossRefGoogle ScholarPubMed
Ji, K., Wang, C., Hong, H., Yin, K., Zhao, C., Xu, Y. et al. (2023) Elevated physical weathering exceeds chemical weathering of clays during the Paleocene–Eocene Thermal Maximum in the continental Bighorn Basin (Wyoming, USA). Palaeogeography, Palaeoclimatology, Palaeoecology, 615, 111445.CrossRefGoogle Scholar
Kapoor, B. (1972) Weathering of micaceous clays in some Norwegian podzols. Clay Minerals, 9, 383394.CrossRefGoogle Scholar
Kemp, S.J., Ellis, M.A., Mounteney, I. & Kender, S. (2016) Paleoclimatic implications of high-resolution clay mineral assemblages preceding and across the onset of the Palaeocene–Eocene Thermal Maximum, North Sea Basin. Clay Minerals, 51, 793813.CrossRefGoogle Scholar
Kennett, J.P. & Scott, L. (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353, 225229.CrossRefGoogle Scholar
Khanolkar, S. & Sharma, J. (2019) Record of Early to Middle Eocene paleoenvironmental changes from lignite mines, western India. Journal of Micropalaeontology, 38, 124.CrossRefGoogle Scholar
Khozyem, H., Adatte, T., Keller, G. & Spangenberg, J. E. (2021) Organic carbon isotope records of the Paleocene–Eocene thermal maximum event in India provide new insights into mammal origination and migration. Journal of Asian Earth Sciences, 212, 104736.CrossRefGoogle Scholar
Knight, J.L., Cicimurri, D.J. & Purdy, R.W. (2007) New Western Hemisphere occurrences of Schizorhiza Weiler, 1930 and Eotorpedo White, 1934 (Chondrichthyes, Batomorphii). Paludicola, 6, 8793.Google Scholar
Knox, R.W.O. (1996) Correlation of the early Paleogene in northwest Europe: an overview. Geological Society, London, Special Publication, 101, 111.CrossRefGoogle Scholar
Koch, P.L., Zachos, J.C. & Gingerich, P.D. (1992) Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. Nature, 358, 319322.CrossRefGoogle Scholar
Kristo, C., Rahardjo, H. & Satyanaga, A. (2017) Effects of variations in rainfall intensity on slope stability in Singapore. International Soil and Water Conservation Research, 5, 258264.CrossRefGoogle Scholar
Kronberg, B.I., Fyfe, W.S., McKinnon, B.J., Couston, J.F., Filho, B.S. & Nash, R.A. (1982) Model for bauxite formation: Paragominas (Brazil). Chemical Geology, 35, 311320.CrossRefGoogle Scholar
Kurtz, A.C., Kump, L.R., Arther, M.A., Zachos, J.C. & Paytan, A. (2003) Early Cenozoic decupling of the global carbon and sulfur cycles. Paleoceanography, 18, 114.CrossRefGoogle Scholar
Lasaga, A.C., Soler, J.M., Ganor, J., Burch, T.E. & Nagy, K.L. (1994) Chemical weathering rate laws and global geochemical cycles. Geochimica et Cosmochimica Acta, 58, 23612386.CrossRefGoogle Scholar
Lippert, P.C. & Zachos, J.C. (2007) A biogenic origin for anomalous fine-grained magnetic material at the Paleocene–Eocene boundary at Wilson Lake, New Jersey. Paleoceanography, 22, 18.CrossRefGoogle Scholar
Maheshwari, A., Sial, A., Coltorti, M., Chittora, V. & Cruz, M.J. (2001) Geochemistry and petrogenesis of Siwana peralkaline granites, west of Barmer, Rajasthan, India. Gondwana Research, 4, 8795.CrossRefGoogle Scholar
Marty, N.C., Cama, J., Sato, T., Chino, D., Villiéras, F., Razafitianamaharavo, A. et al. (2011) Dissolution kinetics of synthetic Na-smectite. An integrated experimental approach. Geochimica et Cosmochimica Acta, 75, 58495864.CrossRefGoogle Scholar
McInerney, F.A. & Wing, S.L. (2011) The Paleocene–Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annual Review of Earth and Planetary Sciences, 39, 489516.CrossRefGoogle Scholar
Meng, M., Zhang, J., Wong, Y.D. & Au, P.H. (2016) Effect of weather conditions and weather forecast on cycling travel behaviour in Singapore. International Journal of Sustainable Transportation, 10, 773780.CrossRefGoogle Scholar
Metz, V., Raanan, H., Pieper, H., Bosbach, D. & Ganor, J. (2005) Towards the establishment of a reliable proxy for the reactive surface area of smectite. Geochimica et Cosmochimica Acta, 69, 25812591.CrossRefGoogle Scholar
Moore, E.A. & Kurtz, A.C. (2008) Black carbon in Paleocene–Eocene boundary sediments: a test of biomass combustion as the PETM trigger. Palaeogeography, Palaeoclimatology, Palaeoecology, 267, 147152.CrossRefGoogle Scholar
Morley, R.J. (2000) Origin and Evolution of Tropical Rain Forests. John Wiley & Sons, Hoboken, NJ, USA, 362 pp.Google Scholar
Morón, S., Fox, D.L., Feinberg, J.M., Jaramillo, C., Bayona, G., Montes, C. & Bloch, J.I. (2013) Climate change during the Early Paleogene in the Bogotá Basin (Colombia) inferred from paleosol carbon isotope stratigraphy, major oxides, and environmental magnetism. Palaeogeography, Palaeoclimatology, Palaeoecology, 388, 115127.CrossRefGoogle Scholar
Murphy, B., Farley, K. & Zachos, J. (2010) An extra-terrestrial 3He-based timescale for the Paleocene–Eocene Thermal Maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochimica et Cosmochimica Acta, 74, 50985108.CrossRefGoogle Scholar
Nagori, M. & Khosla, S. (2019) Early Eocene Ostracoda from the Akli Formation of Barmer Basin, Rajasthan. Journal of Palaeontological Society of India, 64, 1126.Google Scholar
Naskar, P. & Baksi, S.K. (1976) Palynological investigation of Akli lignite, Rajasthan. Palaeontologist, 25, 314319.Google Scholar
Nesbitt, H.W. (1977) Estimation of the thermodynamic properties of Na-, Ca- and Mg-beidellites. The Canadian Mineralogist, 15, 2230.Google Scholar
Nesbitt, H.W. & Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 15231534.CrossRefGoogle Scholar
Nichols, G. (2009) Sedimentology and Stratigraphy, 2nd edition, Wiley-Blackwell, Hoboken, NJ, USA, 419 pp.Google Scholar
Norrish, K. & Pickering, J. (1983) Clay minerals. Pp. 282308 in: Soils: An Australian Viewpoint. Academic Press, London, UK.Google Scholar
Noubhani, A. & Cappetta, H. (1997) Les Orectolobiformes, Carcharhiniformes et Myliobatiformes des bassins a phosphate du Maroc (Maastrichtien-Lutetien basal). Palaeo Ichthyologica, 8, 1327.Google Scholar
Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H. et al. (2006) Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature, 442, 671675.CrossRefGoogle ScholarPubMed
Pal, D.K. & Deshpande, S.B. (1987) Characteristics and genesis of minerals in some benchmark Vertisols of India. Pedologie, 37, 259275.Google Scholar
Pal, D.K., Deshpande, S.B., Venugopal, K. & Kalbande, A. (1989) Formation of di- and trioctahedral smectite as evidence for paleoclimatic changes in southern and central peninsular India. Geoderma, 45, 175184.CrossRefGoogle Scholar
Pareek, H.S. (1981) Basin configuration and sedimentary stratigraphy of western Rajasthan. Journal Geological Society of India, 22, 517527.Google Scholar
Pareek, H.S. (1984) Pre-Quaternary geology and mineral resources of northwestern Rajasthan. Memoirs of the Geological Survey of India, 115, 1107.Google Scholar
Pocknall, D.T., Clowes, C.D. & Jarzen, D.M. (2022) Spinizonocolpites prominatus (McIntyre) Stover & Evans: fossil Nypa pollen, taxonomy, morphology, global distribution, and paleoenvironmental significance. New Zealand Journal of Geology and Geophysics, 10.1080/00288306.2022.2078376.Google Scholar
Polynov, B.B. (1937) The Cycle of Weathering (translated from the Russian by A. Muir, W.G. Ogg & T. Murby). Thomas Murby and Company, London, UK.Google Scholar
Prasad, V., Farooqui, A., Tripathi, M., Garg, R. & Thakur, B. (2009) Evidence of late Palaeocene–Early Eocene equatorial rain forest refugia in southern Western Ghats, India. Journal of Biosciences, 34, 777797.CrossRefGoogle ScholarPubMed
Prasad, V., Uddandam, P.R., Agrawal, S., Bajpai, S., Singh, I., Mishra, A.K. et al. (2020) Biostratigraphy, palaeoenvironment and sea level changes during pre-collisional (Palaeocene) phase of the Indian plate: palynological evidence from Akli Formation in Giral Lignite Mine, Barmer Basin, Rajasthan, Western India. Episodes, 43, 476488.CrossRefGoogle Scholar
Rajak, P.K., Singh, V.K. & Singh, P.K. (2019) Distribution of Inertinites in the early Paleogene lignites of western India: on the possibility of wildfire activities. Journal of the Geological Society of India, 93, 523532.CrossRefGoogle Scholar
Rajkumari, P. & Prasad, G.V.R. (2020) New chondrichthyan fauna from the Palaeogene deposits of Barmer district, Rajasthan, western India: age, palaeoenvironment and intercontinental affinities. Geobios, 58, 5572.CrossRefGoogle Scholar
Rana, R., Kumar, K., Singh, H. & Rose, K. (2005) Lower vertebrates from the late Palaeocene–earliest Eocene Akli Formation, Giral lignite mine, Barmer District, western India. Current Science, 89, 16061613.Google Scholar
Rana, R., Kumar, K. & Singh, H. (2006) Palaeocene vertebrate fauna from the Fatehgarh Formation of Barmer district, Rajasthan, western India. Pp. 113130 in: Micropalaeontology: Application in Stratigraphy and Paleoceanography (Sinha, D.K., editor). Narosa Publishing House, New Delhi, India.Google Scholar
Rengasamy, P., Sarma, V., Murthy, R. & Murti, G.K. (1978) Mineralogy, genesis and classification of ferruginous soils of the eastern Mysore Plateau, India. Journal of Soil Science, 29, 431445.CrossRefGoogle Scholar
Robert, C. & Kennett, J.P. (1992) Paleocene and Eocene kaolinite distribution in the South Atlantic and Southern Ocean: Antarctic climatic and paleoceanographic implications. Marine Geology, 103, 99110.CrossRefGoogle Scholar
Robert, C. & Kennett, J.P. (1994) Antarctic subtropical humid episode at the Paleocene–Eocene boundary: clay-mineral evidence. Geology, 22, 211214.2.3.CO;2>CrossRefGoogle Scholar
Robert, C. & Kennett, J.P. (1997) Antarctic continental weathering changes during Eocene–Oligocene Cryosphere Expansion: clay mineral and oxygen isotope evidence. Geology, 25, 587590.2.3.CO;2>CrossRefGoogle Scholar
Robin, V., Tertre, E., Regnault, O. & Descostes, M. (2016) Dissolution of beidellite in acidic solutions: ion exchange reactions and effect of crystal chemistry on smectite reactivity. Geochimica et Cosmochimica Acta, 180, 97108.CrossRefGoogle Scholar
Robson, B.E., Collinson, M.E., Riegel, W., Wilde, V., Scott, A.C. & Pancost, R.D. (2015) Early Paleogene wildfires in peat-forming environments at Schöningen, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 5362.CrossRefGoogle Scholar
Röhl, U., Westerhold, T., Bralower, T.J. & Zachos, J.C. (2007) On the duration of the Paleocene–Eocene Thermal Maximum (PETM). Geochemistry, Geophysics, Geosystems, 8, 113.CrossRefGoogle Scholar
Rose, K.D., Smith, T., Rana, R.S., Sahni, A., Singh, H., Missiaen, P. & Folie, A. (2006) Early Eocene (Ypresian) continental vertebrate assemblage from India, with description of a new anthracobunid (Mammalia, Tethytheria). Journal of Vertebrate Palaeontology, 26, 219225.CrossRefGoogle Scholar
Rozalén, M.L., Huertas, F.J., Brady, P.V., Cama, J., García-Palma, S. & Linares, J. (2008) Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25°C. Geochimica et Cosmochimica Acta, 72, 42244253.CrossRefGoogle Scholar
Rush, W.D., Kiehl, J.T., Shields, C.A. & Zachos, J.C. (2021) Increased frequency of extreme precipitation events in the North Atlantic during the PETM: observations and theory. Palaeogeography, Palaeoclimatology, Palaeoecology, 568, 110289.CrossRefGoogle Scholar
Samanta, A., Bera, M., Ghosh, R., Bera, S., Filley, T., Pande, K. et al. (2013) Do the large carbon isotopic excursions in terrestrial organic matter across Paleocene–Eocene boundary in India indicate intensification of tropical precipitation? Palaeogeography, Palaeoclimatology, Palaeoecology, 387, 91103.CrossRefGoogle Scholar
Schouten, S., Woltering, M., Rijpstra, W.I.C., Sluijs, A., Brinkhuis, H. & Damsté, J.S.S. (2007) The Paleocene–Eocene carbon isotope excursion in higher plant organic matter: differential fractionation of angiosperms and conifers in the Arctic. Earth and Planetary Science Letters, 258, 581592.CrossRefGoogle Scholar
Scotese, C. (2010) The PALEOMAP Project PaleoAtlas for ArcGIS, vol. 1: Cenozoic Paleogeographic and Plate Tectonic Reconstructions. PALEOMAP Project, Arlington, TX, USA.Google Scholar
Scott, A.C. (2000) The pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 281329.CrossRefGoogle Scholar
Secord, R., Gingerich, P.D., Lohmann, K.C. & MacLeod, K.G. (2010) Continental warming preceding the Palaeocene–Eocene Thermal Maximum. Nature, 467, 955958.CrossRefGoogle ScholarPubMed
Simas, F.N.B., Schaefer, C.E.G.R., Fernandes Filho, E.I., Chagas, A.C. & Brandão, P.C. (2005) Chemistry, mineralogy and micropedology of highland soils on crystalline rocks of Serra da Mantiqueira, southeastern Brazil. Geoderma, 125, 187201.CrossRefGoogle Scholar
Singh, H. (2015) Palynofloral investigation of the Akli Formation (Palaeocene) of Giral lignite mine, Barmer district, Rajasthan. Geophytology, 45, 209214.Google Scholar
Sisodia, M.S. & Singh, U.K. (2000) Depositional environment and hydrocarbon prospects of the Barmer Basin, Rajasthan, India. Nafta (Zagreb), 51, 309326.Google Scholar
Smith, F.A., Wing, S.L. & Freeman, K.H. (2007) Magnitude of the carbon isotope excursion at the Paleocene–Eocene Thermal Maximum: the role of plant community change. Earth and Planetary Science Letters, 262, 5065.CrossRefGoogle Scholar
Smith, T., Kumar, K., Rana, R.S., Folie, A., Solé, F., Noiret, C. et al. (2016) New Early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwana affinities. Geoscience Frontiers, 7, 9691001.CrossRefGoogle Scholar
Sreenivasan, S.P., Bera, M.K., Samanta, A. & Vadlamani, R. (2018) Palaeocene–Eocene carbon isotopic excursion from the shallow-marine-carbonate sequence of northeast India: implications on the CIE magnitude and geometry. Journal of Earth System Science, 127, 111.CrossRefGoogle Scholar
Srivastava, P., Parkash, B. & Pal, D.K. (1998) Clay minerals in soils as evidence of Holocene climatic change, central Indo-Gangetic Plains, north-central India. Quaternary Research, 50, 230239.CrossRefGoogle Scholar
Stow, D.A.V. (2005) Sedimentary Rocks in the Field: A Color Guide. Manson Publishing, London, UK, 320 pp.CrossRefGoogle Scholar
Tabaei, M. & Singh, R.Y. (2002) Palaeoenvironment and palaeoecological significance of microforaminiferal linings in the Akli Lignite, Barmer Basin, Rajasthan, India. Iranian International Journal of Science, 3, 263277.Google Scholar
Tardy, Y., Bocquier, G., Paquet, H. & Millot, G. (1973) Formation of clay from granite and its distribution in relation to climate and topography. Geoderma, 10, 271284.CrossRefGoogle Scholar
Tateo, F. (2020) Clay minerals at the Paleocene–Eocene Thermal Maximum: interpretations, limits, and perspectives. Minerals, 10, 1073.CrossRefGoogle Scholar
Torsvik, T.H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P.V. et al. (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114, 325368.CrossRefGoogle Scholar
Tripathi, S. (1993) New angiosperm pollen from subsurface early Palaeogene sediments of Barmer district, Rajasthan, India. Journal of Palaeosciences, 42, 6165.CrossRefGoogle Scholar
Tripathi, S. (1995) Palynology of subsurface Palaeocene–Eocene sediments near Kapurdi, Barmer district, Rajasthan, India. Palaeobotanist, 43, 4553.Google Scholar
Tripathi, S. (1997) Palynological changes across subsurface Palaeocene–Eocene sediments at Barmer, Rajasthan, India. Journal of Palaeosciences, 46, 168171.CrossRefGoogle Scholar
Tripathi, S., Singh, U. & Sisodia, M. (2003) Palynological investigation and environmental interpretation on Akli Formation (Late Palaeocene) from Barmer Basin, western Rajasthan, India. Journal of Palaeosciences, 52, 8795.CrossRefGoogle Scholar
Tripathi, S., Kumar, M. & Srivastava, D. (2009) Palynology of lower Palaeogene (Thanetian–Ypresian) coastal deposits from the Barmer Basin (Akli Formation, western Rajasthan, India): palaeoenvironmental and paleoclimatic implications. Geologica Acta, 7, 147160.Google Scholar
Walters, G.L., Kemp, S.J., Hemingway, J.D., Johnston, D.T. & Hodell, D.A. (2022) Clay hydroxyl isotopes show an enhanced hydrologic cycle during the Paleocene–Eocene Thermal Maximum. Nature Communications, 13, 7885.CrossRefGoogle ScholarPubMed
Wang, C.W., Hong, H.L., Song, B.W., Yin, K., Li, Z.H., Zhang, K.X. & Ji, L. (2011) The Early-Eocene Climate Optimum (EECO) event in the Qaidam Basin, northwest China: clay evidence. Clay Minerals, 46, 649661.CrossRefGoogle Scholar
Wang, C., Adriaens, R., Hong, H., Elsen, J., Vandenberghe, N., Lourens, L.J. et al. (2017) Clay mineralogical constraints on weathering in response to Early Eocene hyperthermal events in the Bighorn Basin, Wyoming (Western Interior, USA). GSA Bulletin, 129, 9971011.CrossRefGoogle Scholar
Westerhold, T., Röhl, U., McCarren, H.K. & Zachos, J.C. (2009) Latest on the absolute age of the Paleocene–Eocene Thermal Maximum (PETM): new insights from exact stratigraphic position of key ash layers +19 and –17. Earth and Planetary Science Letters, 287, 412419.CrossRefGoogle Scholar
Westerhold, T., Marwan, N., Drury, A.J., Liebrand, D., Agnini, C., Anagnostou, E. et al. (2020) An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369, 13831387.CrossRefGoogle ScholarPubMed
White, D.E., Hem, J.D. & Waring, G. (1963) Chemical Composition of Subsurface Waters. USGS Professional Paper 440-F. United States Geological Survey, Reston, VA, USA, 74 pp.Google Scholar
Wilson, M. (1987) A Handbook of Determinative Methods in Clay Mineralogy. Blackie, Glasgow, UK, 308 pp.Google Scholar
Wilson, M. & Cradwick, P. (1972) Occurrence of interstratified kaolinite–montmorillonite in some Scottish soils. Clay Minerals, 9, 435437.CrossRefGoogle Scholar
Wing, S.L., Harrington, G.J., Smith, F.A., Bloch, J.I., Boyer, D.M. & Freeman, K.H. (2005) Transient floral change and rapid global warming at the Paleocene–Eocene boundary. Science, 310, 993996.CrossRefGoogle ScholarPubMed
Zachos, J.C., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686693.CrossRefGoogle ScholarPubMed
Zachos, J.C., Wara, M.W., Bohaty, S., Delaney, M.L., Petrizzo, M.R., Brill, A. et al. (2003) A transient rise in tropical sea surface temperature during the Paleocene–Eocene Thermal Maximum. Science, 302, 15511554.CrossRefGoogle ScholarPubMed
Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C. et al. (2005) Rapid acidification of the ocean during the Paleocene–Eocene Thermal Maximum. Science, 308, 16111615.CrossRefGoogle ScholarPubMed
Zachos, J.C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H. et al. (2006) Extreme warming of mid-latitude coastal ocean during the Paleocene–Eocene Thermal Maximum: inferences from TEX86 and isotope data. Geology, 34, 737.CrossRefGoogle Scholar
Zeebe, R.E., Zachos, J.C. & Dickens, G.R. (2009) Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nature Geoscience, 2, 576580.CrossRefGoogle Scholar
Zhao, C., Wang, C., Hong, H., Algeo, T.J., Yin, K., Ji, K. et al. (2021) Origin of dioctahedral smectites in Lower Eocene Lulehe Formation paleosols (Qaidam Basin, China). Applied Clay Science 203, 106026.CrossRefGoogle Scholar