Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T23:44:56.908Z Has data issue: false hasContentIssue false

Clay mineral and organic diagenesis of the Lower Oligocene Schöneck Fishshale, western Austrian Molasse Basin

Published online by Cambridge University Press:  09 July 2018

S. Gier*
Affiliation:
Institute of Petrology, University of Vienna, Althanstraûe 14, 1090 Vienna, Austria
*

Abstract

The ‘Fischschiefer formation’ has been identified as the likely source rock for petroleum in the western Molasse Basin of Austria. The investigated cores originate from different depths (1242 m to 4294 m) of the Fischschiefer horizon. The illitization observed in the <0.2 μm fraction proceeds slowly, probably because of the low geothermal gradient (3°C/100 m) in the Molasse Basin. The illite content in illite-smectite ranges from 30% (randomly ordered) for the shallowest sample to 65% (R0+R1 ordering) for the deepest sample. The oxygen index (OI) vs. hydrogen index (HI) plot implies type I to II kerogen for the organic matter. Vitrinite reflectance and Rock Eval parameters indicate an immature stage in the diagenesis of kerogen. Only the deepest sample (4294 m, 0.6% Rr) reaches the early oil window. There is a good correlation of the illitization trend of the mixed-layer mineral I-S and the organic maturity parameters.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awwiller, D.N. (1993) Illite/smectite formation and potassium mass transfer during burial diagenesis of mudrocks: A study from the Texas Gulf Coast Paleocene-Eocene. J. Sed. Pet. 63, 501512.Google Scholar
Bruce, C.H. (1984) Smectite dehydration – its relation to structural development and hydrocarbon accumulation in northern Gulf of Mexico Basin. Am. Assoc. Petrol. Geol. Bull. 68, 673683.Google Scholar
Burst, J.F. (1969) Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration. Am. Assoc. Petrol. Geol. Bull. 53, 7393.Google Scholar
Elliott, W.C. & Matisoff, G. (1996) Evaluation of kinetic models for the smectite to illite transformation. Clays Clay Miner. 44, 7787.Google Scholar
Espitalié, J., Laporte, J.L., Madec, M., Marquis, F., Leplat, P., Paulet, J. & Boutefeu, A. (1977) Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degrée d’évolution. Rev. Inst. Fr. Pét. 32, 2342.Google Scholar
Francu, J., Müller, P., Šucha, V. & Zatkalikova, V. (1990) Organic matter and clay minerals as indicators of thermal history in the Transcarpathian Depression (East Slovakian Neogene Basin) and the Vienna Basin. Geol. Carpathica, 41, 535546.Google Scholar
Glover, E.D. (1961) Method of solution of calcareous materials using the complexing agent, EDTA. J. Sed. Pet. 31, 622626.Google Scholar
Horton, R.B., Johns, W.D. & Kurzweil, H. (1985) Illite diagenesis in the Vienna Basin. Tschermaks Min. Petr. Mitt. 34, 239260.CrossRefGoogle Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 87, 725737.Google Scholar
Hsueh, C.M. & Johns, W.D. (1985) Diagenesis of organic materials and clay minerals in the neogene sediments of Western Taiwan. Petrol. Geol. Taiwan, 21, 129171.Google Scholar
Hunt, J.M (1979) Petroleum Geochemistry and Geology. Freeman & Co., San Francisco.Google Scholar
Johns, W.D. (1979) Clay mineral catalysis and petroleum generation. Ann. Rev. Earth Planet. Sci. 7, 183198.Google Scholar
Johns, W.D. & Hoefs, J. (1985) Maturation of organic matter in neogene sediments from the Aderklaa oilfield, Vienna Basin, Austria. Tschermaks Min. Petr. Mit. 34, 143158.Google Scholar
Johns, W.D. & Kurzweil, H. (1979) Quantitative estimation of illite-smectite mixed-phases formed during burial diagenesis. Tschermaks Min. Petr. Mit. 26, 203215.Google Scholar
Johns, W.D. & McKallip, T.E. (1989) Burial diagenesis and specific catalytic activity of illite-smectite clays from Vienna Basin, Austria. Am. Assoc. Petrol. Geol. Bull. 73, 472482.Google Scholar
Johns, W.D. & Shimoyama, A. (1972) Clay minerals and petroleum-forming reactions during burial and diagenesis. Am. Assoc. Petrol. Geol. Bull. 56, 21602167.Google Scholar
Kohler, E. & Wewer, R. (1980) Gewinnung reiner Tonmineralkonzentrate fü r die mineralogis che Analyse. Keramische Zeits. 32, 250252.Google Scholar
Kunz, B. (1978) Temperaturmes sungen in Erdölbohrungen der Molassezone Oberösterreichs. Mitt. Österr. Geol. Ges. 68, 5158.Google Scholar
Kurzweil, H. & Johns, W.D. (1981) Diagenesis of Ter tiary mar ls tones in the Vienna Bas in. Tschermaks Min. Petr. Mit. 29, 103125.Google Scholar
Lynch, F.L. (1997) Frio shale mineralogy and the stoichiometry of the smectite to illite reaction: the most important reaction in clastic sedimentary diagenesis. Clays Clay Miner. 45, 618631.Google Scholar
Malzer, O., Rögl, F., Seifert, P., Wagner, L., Wessely, G. & Brix, F. (1993) Die Molassezo ne und deren Untergrund. Pp. 281323.in: Erdö l und Erdgas in Österreich (Brix, F. & Schultz, O., editors). NHM, Vienna, Austria.Google Scholar
Moore, D.M. & Jr.Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York.Google Scholar
Perry, E.A. & Hower, J. (1972) Late-stage dehydration in deeply buried pelitic sediments. Am. Assoc. Petrol. Geol. Bull. 56, 20132021.Google Scholar
Peters, K.E. (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. Am. Assoc. Petrol. Geol. Bull. 70, 318329.Google Scholar
Philips, APD 3.5B (1992) PC-APD 3.5B, Philips PW 1877 Automated Powder Diffracti on. Philips, Holland.Google Scholar
Powers, M.C. (1967) Fluid-release mechanisms in compacting marine mudrocks and their importance in oil exploration. Am. Assoc. Petrol. Geol. Bull. 51, 12401254.Google Scholar
Sachsenhofer, R.F., Rantitsch, G., Hasenhüttl, C., Russegger, B. & Jelen, B. (1998) Smectite to illite diagenesis in early Miocene sediments from the hyperthermal western Pannonian Basin. Clay Miner. 33, 523537.Google Scholar
Schegg, R. & Leu, W. (1996) Clay mineral diagenesis and thermal history of the Thonex well, Western Swiss Molasse Basin. Clays Clay Miner. 44, 693705.CrossRefGoogle Scholar
Schmidt, F. & Erdogan, L.T. (1996) Paleohydrodynamics in exploration. EAGE Spec. Publ. 5, 255265.Google Scholar
Schultz, LG. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierre shale. US Geol. Surv. Prof. Paper, 391-C.Google Scholar
Šucha, V., Kraus, I., Gerthofferova, H., Petes, J. & Serekova, M. (1993) Smectite to illite conversion in bentonites and shales of the East Slovak Basin. Clay Miner. 28, 243253.Google Scholar
Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P. (1998) Organic Petrology. Borntraeger, Berlin-Stuttgart.Google Scholar
Tissot, B.P. & Welte, D.H. (1984) Petroleum Formation and Occurrence. Springer Verlag, New York.CrossRefGoogle Scholar
Tollmann, A. (1985) Die Molassezone. Geologie von Österreich, Band 2. Verlag Franz Deuticke, Vienna, Austria.Google Scholar
Wagner, L. (1996) Stratigraphy and hydrocarbons in the Upper Austrian Molasse Foredeep (active margin). EAGE Spec. Publ. 5, 217235.Google Scholar
Wagner, L. (1998) Tectono-stratigraphy and hydrocarbons in the Molasse Foredeep of Salzburg, Upper and Lower Austria. Pp 339369.in: Cenozoic Foreland Basins of Western Europe (Mascl, A.. et al., editors). Geological Society Spec. Publ. 134. Geological Society, London.Google Scholar
Wagner, L., Kuckelkorn, K. & Hiltmann, W. (1986) Neue Ergebnissezuralpinen Gebirgsbildung Oberösterreichs aus der Bohring Oberhofen 1 – Stratigraphie, Fazies, Maturität und Tektonik. Erdö l, Erdgas, Kohle, 102, 1219.Google Scholar