Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T01:15:20.004Z Has data issue: false hasContentIssue false

Chemostratigraphy and provenance of clays and other non-carbonate minerals in chalks of Campanian age (Upper Cretaceous) from Sussex, southern England

Published online by Cambridge University Press:  27 February 2018

D. S. Wray*
Affiliation:
School of Science, The University of Greenwich, Pembroke, Chatham Maritime, Kent, ME4 4TB, UK
C. V. Jeans
Affiliation:
Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EQ, UK
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Geochemical analysis of acid-insoluble residues derived from white chalks and marl seams of Campanian age from Sussex, UK, has been undertaken. All display a broadly similar <2 μm mineralogical composition consisting of smectite or smectite-rich illite-smectite with subordinate illite and minor amounts of talc. Plots of K2O/Al2O3 and TiO2/Al2O3 indicate that most marl seams have an acid-insoluble residue composition which is slightly different to that of the over- and underlying white chalk, implying that marl seams are primary sedimentary features not formed through white chalk dissolution. On the basis of a negative Eu anomaly and trace element geochemistry one marl seam, the Old Nore Marl, is considered to be volcanically derived and best classified as a bentonite; it is considered to correlate with the bentonite M1 of the north German succession.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2014 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

References

Batchelor, R.A., Harper, D.A.T & Anderson, T.B. (2003) Geochemistry and potential correlation of Silurian (Telychian) metabentonites from Ireland and S. Scotland. Geological Journal, 38, 161–174.10.1002/gj.940Google Scholar
Brydone, R.M. (1914a) The Zone of offaster pilula in the south English Chalk: Part 1. Geological Magazine (Decade VI), 1, 359–369.Google Scholar
Brydone, R.M. (1914b) The Zone of offaster pilula in the south English Chalk: Part 4, general conclusions. Geological Magazine (Decade VI), 1, 509–513.Google Scholar
Deconinck, J.-F. & Chamley, H. (1995) Diversity of smectite origins in late Cretaceous sediments: Examples of chalks from northern France. Clay Minerals, 30, 365–379.10.1180/claymin.1995.030.4.09Google Scholar
Dorn, P. & Bräutigam, F. (1959) Hinweise auf oberkreidevulkanismus in NW-Deutschland. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 11, 1–4.Google Scholar
Ernst, G., Schmid, F. & Seibertz, E. (1983) Eventstratigraphie im Cenoman und Turon von NWDeutschland. Zitteliana, 10, 531–554.Google Scholar
Jarvis, I. & Jarvis, K.E. (1985) Rare-earth element geochemistry of standard sediments - a study using inductively coupled plasma spectrometry. Chemical Geology, 53, 335–344.10.1016/0009-2541(85)90078-6CrossRefGoogle Scholar
Jeans, C.V. (2006) Clay mineralogy of the Cretaceous strata of the British Isles. Clay Minerals, 41, 47–150.Google Scholar
Jeans, C.V., Tosca, N., Hu, X.F. & Boreham, S. (2014) Clay mineral-grain size-calcite cement relationships in the Upper Cretaceous chalk, UK: A preliminary investigation. Clay Minerals, 49, xxx-xxx. 10.1180/claymin.2014.049.2.09Google Scholar
Mortimore, R.N. (1986) Stratigraphy of the Upper Cretaceous White Chalk of Sussex. Proceedings of the Geologists’ Association, 97, 97–140.10.1016/S0016-7878(86)80065-7CrossRefGoogle Scholar
Mortimore, R.N., Wood, C.J. & Gallois, R.W. (2001) British Upper Cretaceous Stratigraphy. Joint Nature Conservation Committee, Peterborough, 558 pp.Google Scholar
Pacey, N.R. (1984) Bentonites in the Chalk of central eastern England and their relation to the opening of the northeast Atlantic. Earth and Planetary Science Letters, 10, 48–60.Google Scholar
Pearce, J.A. (1996) A user’s guide to basalt discrimination diagrams. Pp. 79–113 in: Trace element Geochemistry of Volcanic rocks; Applications for Massive Sulphide Exploration, Short Course Notes (A.H. Bailes, E.H. Christiansen, A.G. Galley, G.A. Jenner, J.D. Keith, R. Kerrich, D.R. Lentz, C.M. Lesher, S.B. Lucas, J.N. Ludden, J.A. Pearce, S.A. Peloquin, R.A. Stern, W.E. Stone, E.C. Syme, H.S. Swinden, & D.A. Wyman, editors). Geological Association of Canada, 12.Google Scholar
Pearce, J.A., Harris, N.B.W. & Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983.10.1093/petrology/25.4.956Google Scholar
Perrin, R.M.S. (1971) The Clay Mineralogy of British Sediments. Mineralogical Society (Clay Minerals Group), London, 247 pp..Google Scholar
Rollinson, H.R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical, Harlow, 352 pp.Google Scholar
Rudnick, R.L. & Gao, S. (2003) Composition of the continental crust. Pp. 1–64 in: The Crust; Treatise on Geochemistry (R.L. Rudnick, editor), 3,Elsevier.Google Scholar
Schonfeld, J., Schulz M.-G., McArthur, J.M., Burnett, J., Gale, A.S., Hambach, U., Hansen, H.J., Kennedy, W.J., Rasmussen, K.L., Thirlwall, M.F. & Wray, D.S. (1996) New results on biostratigraphy, palaeomagnetism, geochemistry and correlation from the standard section for the Upper Cretaceous White Chalk of northern Germany (Lä gerdorf-Kronsmoor- Hemmoor). Mitteilungen aus dem Geologisch- Palä ontologischen Institut der Universitä t Hamburg, 77, 545–575.Google Scholar
Seibertz, E. & Vortisch, W. (1979) Zur stratigraphie, petrologie und genese einer bentonit-lage aus dem oberen mittel-Turon (Oberkreide) des südöstlichen Mü nsterlandes. Geologische Rundschau, 68, 649–679.10.1007/BF01820811Google Scholar
Weir, A.H. & Catt, J.A. (1965) The mineralogy of some Upper Chalk samples from the Arundel area, Sussex. Clay Minerals, 6, 97–110.10.1180/claymin.1965.006.2.04Google Scholar
Wray, D.S. (1995) Origin of clay-rich beds in Turonian chalks from Lower Saxony, Germany – a rare earth element study. Chemical Geology, 119, 161–173.10.1016/0009-2541(94)00089-QGoogle Scholar
Wray, D.S. (1999) Identification and long-range correlation of bentonites in Turonian - Coniacian (Upper Cretaceous) chalks of northwest Europe. Geological Magazine, 136, 361–371.10.1017/S0016756899002836CrossRefGoogle Scholar
Wray, D.S. & Wood, C.J. (1995) Geochemical identification and correlation of tuff layers in Lower Saxony, Germany. Berliner Geowissenschaftliche Abhandlungen, E16.1, 215–226.Google Scholar
Wray, D.S. & Wood, C.J. (1998) Distinction between detrital and volcanogenic clay-rich beds in Turonian- Coniacian Chalks of eastern England. Proceedings of the Yorkshire Geological Society, 52, 95–105.10.1144/pygs.52.1.95Google Scholar
Wray, D.S. & Wood, C.J. (2002) Identification of a new bentonite in sediments of mid-Turonian age from Lower Saxony, Germany and its correlation within N. Europe. Austrian Academy of Science Series: Schriftenreihe der Erdwissenschaftlichen Kommissionen, 15, 47–58.Google Scholar
Wray, D.S., Kaplan, U. & Wood, C.J. (1995) Tuffvorkommen und ihre bio- und eventstratigraphie im Turon des Teutoburger Waldes, Der Egge und Des Haarstrangs. Geologie und Paläontologie in Westfalen, 37, 1–53.Google Scholar
Wray, D.S., Wood, C.J., Ernst, G. & Kaplan, U. (1996) Geochemical subdivision and correlation of clay-rich beds in Turonian sediments of northern Germany. Terra Nova, 8, 603–610.10.1111/j.1365-3121.1996.tb00790.xGoogle Scholar