Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T01:03:15.189Z Has data issue: false hasContentIssue false

Chemisorption of methylene blue by kaolinite*

Published online by Cambridge University Press:  09 July 2018

F. A. Faruqi
Affiliation:
West Regional Laboratories, Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan, Kyoto Technical University, Japan
Susumu Okuda
Affiliation:
West Regional Laboratories, Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan, Kyoto Technical University, Japan
W. O. Williamson
Affiliation:
Department of Materials Science, Pennsylvania State University, University Park, Pa., U.S.A.

Abstract

The chemisorption of methylene blue by kaolinite crystals increased as the aqueous suspensions changed from acid to alkaline because, at high pH values, not only the basal pinacoids but the edge-faces were negatively charged. The inability to calculate acceptable specific surfaces or cation exchange capacities from the chemisorption data is discussed, with special reference to the orientation of adsorbed dye cations, the covering of more than one exchange site by a monomer or polymer, the different concentrations of exchange sites on the basal pinacoids and edge-faces respectively, the possibility that such sites occur on the tetrahedral rather than on the octahedral basal pinacoid, and the incomplete replacement of inorganic cations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution No. 66-33 from the College of Earth and Mineral Sciences, The Pennsylvania State University, University Park, Pa., U.S.A.

References

Allingham, M.M., Cullen, J.M., Giles, C.H., Jain, S.K. & Woods, J.S. (1958) J. appl Chem., Lond.8, 108.CrossRefGoogle Scholar
Bergmann, K. & O'Konski, C.T. (1963) J. phys. Chem., Ithaca 67, 2169.Google Scholar
Boardman, G. & Worall, W.E. (1965) Science of Ceramics (Stewart, G. H., editor), Vol. 2, p. 47. Academic Press, London.Google Scholar
Boardman, G. & Worrall, W.E. (1966) Trans. Br. Ceram. Soc.65, 343.Google Scholar
Bundy, W.M., Johns, W.D. & Murray, H.H. (1966) Clays Clay Miner.14, 331.CrossRefGoogle Scholar
Cashen, G.H. (1961) Chem. Ind.No. 43, 1732.Google Scholar
Cashen, G.H. (1963) Nature, Lond.197, 349.CrossRefGoogle Scholar
Cox, R.W., Frostick, A.C., Garrett, W.G. & Williamson, W.O. (1956) A Reconnaissance of the Ceramic and Refractory Clays of Western Australia.C.S.I.R.O. (Australia), Div. Ind. Chem. Tech. Paper No. 2.Google Scholar
Edwards, D.G., Poser, A.M. & Quirk, J.P. (1965a) Trans. Faraday Soc.61, 2808.CrossRefGoogle Scholar
Edwards, D.G., Poser, A.M. & Quirk, J.P. (1965b) Trans. Faraday Soc.61, 2816.CrossRefGoogle Scholar
Fairbairn, P.E. & Robertson, R.H.S. (1957) Clay Miner. Bull.3, 129.CrossRefGoogle Scholar
Gaskin, A.J. & Samson, H.R. (1951) Ceramic and Refractory Clays of South Australia. Bull. geol. Surv. S. Aust.28.Google Scholar
Gibb, J.G. & Ritche, P.D. (1954) J. appl. Chem., Lond.4, 483.CrossRefGoogle Scholar
Greence-Kelly, R. (1964) Clay Miner. Bull.5, 392.CrossRefGoogle Scholar
Harward, M.E. & Coleman, N.T. (1954) Soil Sci.78, 181.CrossRefGoogle Scholar
Helmy, A.K. (1963) Soil Sci.95, 204.CrossRefGoogle Scholar
Hunter, R.J. & Alexander, A.E. (1963a) J. Colloid Sci.18, 820.CrossRefGoogle Scholar
Hunter, R.J. & Alexander, A.E. (1963b) J. Colloid Sci.18, 833.CrossRefGoogle Scholar
Kipling, J.J. & Wilson, R.B. (1960) J. appl. Chem., Lond.10, 109.CrossRefGoogle Scholar
Ayoa, Kitahara & Williamson, W.O. (1964) J. Am. Ceram. Soc.47, 313.Google Scholar
Loughnan, F.C. & See, G.T. (1958) Aust. J. Sci.21, 22.Google Scholar
Mackenzie, R.C. (1951) J. Colloid Sci.6, 219.Google Scholar
Murray, H.H. & Lyons, S.C. (1956) Clays Clay Miner.4, 31.CrossRefGoogle Scholar
Murray, H.H. & Lyons, S.C. (1960) Clays Clay Miner.8, 11.CrossRefGoogle Scholar
Okazaki, R., Smith, H.W. & Mooodie, C.D. (1964) Soil Sci.97, 202.CrossRefGoogle Scholar
Susumu Okuda, A & Williamson, W.O. (1964) Clays Clay Miner.12, 223.CrossRefGoogle Scholar
Ormsby, W.C., Shartsis, J.M. & Woooside, K.H. (1962) J. Am. Ceram. Soc.45, 361.CrossRefGoogle Scholar
Orr, C. JR & Dallavalle, J.M.. (1959) Fine Particle Measurement, Chap. 8, pp. 221232. Macmillan, New York.Google Scholar
Plesch, P.H. & Robertson, R.H.S. (1948) Nature, Lond.161, 1020.CrossRefGoogle Scholar
Quirk, J.P. (1960) Nature, Lurid.188, 253.CrossRefGoogle Scholar
Ramachandran, V.S., Kacker, K.P. & Patwardhan, N.K. (1962) Am. Miner.47, 165.Google Scholar
Robertson, R.H.S. & Ward, R.M. (1951) J. Pharm. Pharmac.3, 27.CrossRefGoogle Scholar
Schofield, R.K. & Samson, H.R. (1953) Clay Miner. Bull.2, 45.CrossRefGoogle Scholar
Schollenberger, C.J. & Simon, R.H. (1945) Soil Sci.59, 13.CrossRefGoogle Scholar
Street, N. & Buchanan, A.S. (1956) Aust. J. Chem.9, 450.CrossRefGoogle Scholar
Taylor, W.H. (1935a) Chem. Ind.54, 732.CrossRefGoogle Scholar
Taylor, W.H. (1935b) Z. Kristallogr.91, 450.CrossRefGoogle Scholar
van Olpnen, H. (1963) An Introduction to Clay Colloid Chemistry, p. 91. Interscience, New York.Google Scholar
Verwey, E.J.W. (1941) Recl Trav. chim. Pays-Bas Belg.60, 625.CrossRefGoogle Scholar
Warwicker, J.O. (1955) J. chem. Soc. 2531.Google Scholar
Armin, Weiss & Russow, J. (1963) International Clay Conference, Stockholm (Rosenqvist, I. Th. & Graff-Petersen, P., editors), pp. 203213. Pergamon Press, Oxford.Google Scholar
White, D. & Cowan, C.T. (1960) Trans. Br. Ceram. Soc.59, 16.Google Scholar
Worrall, W. (1958) Trans. Br. Ceram. Soc.57, 210.Google Scholar
Yopps, J.A. & Fuerstenau, D.W. (1964) J. Colloid Sci.19, 61.CrossRefGoogle Scholar