Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T01:12:59.287Z Has data issue: false hasContentIssue false

Chemical and mineralogical characterization of a Cretaceous clay from the Lousã Basin (Central Portugal)

Published online by Cambridge University Press:  09 July 2018

M. I. Prudêncio
Affiliation:
Departamento de Quimica, ICEN, LNETI, 2685 Sacavém Portugal
J. C. Waerenborgh
Affiliation:
Departamento de Quimica, ICEN, LNETI, 2685 Sacavém Portugal
J. M. P. Cabral
Affiliation:
Departamento de Quimica, ICEN, LNETI, 2685 Sacavém Portugal

Abstract

Samples of two lenticular clay bodies from a Cretaceous deposit near Padrão (Lousã basin) were characterized by INAA, XRD and Mössbauer spectroscopy. This clay is believed to be the raw material used to manufacture the Iron Age and Roman fine grey pottery from Conímbriga. The differences observed in the chemical and mineralogical compositions of the clay samples and of different size fractions are consistent with the high variance found in the compositional group corresponding to that archaeological site.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cabral, J.M.P. Gouveia, M.A. & Prudêncio, M.I. (1979) Determinação de terras raras e doutros oligoelementos em rochas por activação com neutrões térmicos. Bol. Museu Lab. Min. Geol. Fac. Ciências 16, 205–218.Google Scholar
Cabral Waerenborgh, J.C., Figueiredo, M.O. & Matias, P.H.M. (1986) Contribuição para o estudo da ceramica cinzenta fina de Conimbriga e de Santa Olaia por espectroscopia Mossbauer e difracção de raios X. Conimbriga XXV, 521.Google Scholar
Ericsson, T. & Wappling, R. (1976) Texture effects in 3/2-1/2 Mossbauer spectra. J. Phys. (Paris) C6, 719723.Google Scholar
De Grave, E., Bowen, L.H. & Weed, S.B. (1982) Mossbauer study of A1 substituted hematites. J. Mag. Magn. Mat. 27, 98–108.CrossRefGoogle Scholar
Heller-Kallai, L. & Rozenson, I. (1981) The use of Mossbauer spectroscopy of iron in clay mineralogy. Phys. Chem. Miner. 7, 223–238.Google Scholar
Mørup, S., Madsen, M.B., Franck, J., Villadsen, J. & Koch, C.J.W. (1983) Anew interpretation of Mossbauer spectra of microcrystalline goethite “super-ferromagnetism” or “super-spin, glass” behaviour? J. M. Magn. Mat. 40, 163174.Google Scholar
Prudêncio, M.I., Gouveia, M.A. & Cabral, J.M.P. (1986) Instrumental neutron activation analysis of two French geochemical reference samples–basalt BR and biotite Mica-Fe. Geost. Newsl. X, 2931.Google Scholar
Prudêncio, M.I., Cabral, J.M.P. & Tavares, A. (1987a) Identification of clay sources used for Commbriga and Santa Olaia pottery making. Proc. Sym. Archaeometry, Athens, 1986 (in press).Google Scholar
Prudêncio, M.I., Figueiredo, M.O. & Cabral, J.M.P. (1987b) Rare earth distribution and its correlation with clay mineralogy in the clay-sized fraction of Cretaceous and Pliocene sediments (central Portugal). Summaries-Proc. 6th West European Clay Groups, 446447.Google Scholar
Prudêncio, M.I. (1987) Contribui9ao para o estudo da provenidncia das argilas usadas no fabrico da ceramica cinzenta fina local e regional de Commbriga. Int. Rep. ICEN-LNETI. Google Scholar
Rozenson, I., Zak, I. & Spiro, B. (1980) The distribution and behavior of iron in sequences of dolomites, clays and oxides. Chem. Geol. 31, 83–96.Google Scholar
Stone, A.J. (1967) Least squares fitting of Mossbauer spectra. Appendix to Bancroft G.M., Maddock A.G., Ong W.K., Prince R.H. & Stone A.J. (1967). J. Chem. Soc.(A) 19661971.Google Scholar
Verbeeck, A.E., De Grave, E. & Vandenberghe, R.E. (1986) The effect of the particle morphology on the Mölssbauer effect in αFe2O3 . Hyp. Int. 28, 639-642.Google Scholar