Published online by Cambridge University Press: 26 March 2018
Organo-kenyaites were prepared from a cetyltrimethylammonium hydroxide (C16TMAOH) solution and solid sodium kenyaite (Na2Si22O45.10H2O) mixture. The effect of the initial cetyltrimethylammonium solution on the structure of the intercalated materials was investigated by CHN analyses, X-ray diffraction (XRD), thermogravimetric analysis, SEM, and 29Si and 13C solid NMR techniques. For C16TMAOH concentration 0.25 mM, the Na+ cations were fully exchanged. Initial C16TMAOH concentrations higher than 0.25 mM had little effect on the intercalated amount of C16TMA+ cations. The organic cations content reached a plateau of 0.66 mmol/g. The arrangement model of C16TMA+ cations corresponded to a tilt of the organic cations to the silicate layers with an angle of 42° as deduced by XRD studies. The C16TMA+ cations exhibited mainly trans-configuration of the methyl chains, as was shown by solid 13C NMR. The thermal stability of the organo-silicates was studied using in situ FTIR and in situ XRD in the range 25–450°C. The C16TMA-kenyaites were stable at temperatures below 200°C. They collapsed at higher temperatures due to the decomposition of the intercalated surfactants. These organo-kenyaites were used to remove the acidic dye molecule, eosin. The removal tests were performed at varying conditions of initial dye concentrations, organic content in the organo-kenyaites and heating temperatures. In general, the organic modification improved the removal capacity of the Na-kenyaite from 2 mg of eosin/g to 60 mg of eosin/g, and this capacity was related to the organic contents and the calcination temperatures of the organo-kenyaites.
Associate Editor: M. Pospíšil