Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T01:56:07.596Z Has data issue: false hasContentIssue false

Characterization of Neogene marls from the Kert Basin (northeast Morocco): suitability for the ceramics industry

Published online by Cambridge University Press:  04 November 2019

Hicham Nasri*
Affiliation:
Laboratoire des Géosciences Appliquées, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
Ali Azdimousa
Affiliation:
Laboratoire des Géosciences Appliquées, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
Kamal El Hammouti
Affiliation:
Laboratoire des Géosciences Appliquées, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
Abdelilah El Haddar
Affiliation:
Laboratoire des Géosciences Appliquées, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
Meriam El Ouahabi
Affiliation:
UR Argile, Géochimie et Environnement Sédimentaires (AGEs), Département de Géologie, Université de Liège, Liège, Belgium

Abstract

The Neogene marls from the lower Kert area (northeast Morocco) were characterized to evaluate their suitability for the ceramics industry. Two cross-sections involving all of the Neogene facies were studied on both banks of the Kert River. Grey and green marls occurring between sandstone and tuffs were characterized by mineralogical (X-ray diffraction) and physicochemical (grain size, Atterberg limits, X-ray fluorescence and specific surface area) analyses. The Neogene clays studied are mainly calcareous silty marls containing 13–20 wt.% calcite. They consist of quartz, calcite, feldspars, dolomite, illite, kaolinite, chlorite and 10–14 Å illite-vermiculite mixed layers. Cristobalite was detected only in the uppermost level of the green marls, and it originates from a volcanic ash of Messinian age. Trace amounts of siderite and rhodochrosite indicate reducing or locally oxidizing conditions during sedimentation or shortly thereafter. The marls have medium to high plasticity, making them optimal for extrusion. Raw Neogene marls are suitable for manufacturing structural clay products. More specific uses, such as hollow products, roofing tiles and masonry bricks, were supported by the geochemical results and grain-size distribution.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: João Labrincha

References

Abajo, M. (2000) Manual sobre fabricación de baldosas, tejas y ladrillos. Beralmar S.A., Barcelona, Spain.Google Scholar
Abdellah, R. (1997) Les bassins néogènes du sillon sud-rifain et du Rif nord oriental (Maroc): sédimentologie, paléontologie et évolution dynamique. Doctoral thesis. Sidi Mohammed Ben Abdellah University, Fez, Morocco.Google Scholar
Achalhi, M. (2016) Chronostratigraphie et sédimentologie des bassins néogènes de Boudinar et d'Arbaa Taourirt (Rif oriental, Maroc). Doctoral thesis. Mohamed Premier University, Oujda, Morocco.Google Scholar
Achalhi, M., Münch, P., Cornée, J.-J., Azdimousa, A., Melinte-Dobrinescu, M., Quillévéré, F., Drinia, H., Fauquette, S., Jiménez-Moreno, G., Merzeraud, G., Moussa, A.B., El Kharim, Y. & Feddi, N. (2016) The late Miocene Mediterranean–Atlantic connections through the north Rifian corridor: new insights from the Boudinar and Arbaa Taourirt basins (northeastern Rif, Morocco). Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 131152.CrossRefGoogle Scholar
AFNOR (1992) Norme française. Sol: reconnaissance et essai. Analyse granulométrique des sols. Méthode par sédimentation. NF P 94-057. Association Française de Normalisation, Paris, France, 17 pp.Google Scholar
AFNOR (1993) Norme française. Sols: reconnaissance et essais. Détermination des limites d'Atterberg: Limite de liquidité à la coupelle-limite de plasticité au rouleau. NF P 94-051. Association Française de Normalisation, Paris, France, 15 pp.Google Scholar
AFNOR (1996) Norme française. Sols: reconnaissance et essais. Détermination de la teneur en carbonate. Méthode du calcimètre. NF P 94-048. Association Française de Normalisation, Paris, France, 11 pp.Google Scholar
AFNOR (1998) Norme française. Sol: reconnaissance et essais. Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériau rocheux. NF P 94-068. Association Française de Normalisation, Paris, France, 8 pp.Google Scholar
Alvares, J.I., Navarro, I. & Garcia Casado, P.J.G. (2000) Thermal, mineralogical and chemical studies of the mortars used in the cathedral of Pamplona, Spain. Thermochim Acta, 365(1–2): 177187.CrossRefGoogle Scholar
Andres, A., Díaz, M.C., Coz, A., Abellán, M.J. & Viguri, J.R. (2009) Physico-chemical characterisation of bricks all through the manufacture process in relation to efflorescence salts. Journal of the European Ceramic Society, 29(10), 18691877.CrossRefGoogle Scholar
Asebriy, L., Bourgois, J., Cherkaoui, T.E. & Azdimousa, A. (1993) Evolution tectonique récente de la zone de faille du Nékor: importance paléogéographique et structurale dans le Rif externe, Maroc. Journal of African Earth Sciences, 17, 6574.CrossRefGoogle Scholar
Azdimousa, A. & Bourgois, J. (1993) Les communications entre l'Atlantique et la Méditerranée par le couloir sud-rifain du Tortonien à l'Actuel: stratigraphie séquentielle des bassins Néogènes de la région du Cap des Trois Fourches (Rif oriental, Maroc). Journal of African Earth Sciences (and the Middle East), 17, 233240.CrossRefGoogle Scholar
Azdimousa, A., Jabaloy, A., Asebriy, L., Booth-Rea, G., Gonzalez-Lodeiro, F. & Bourgois, J. (2007) Lithostratigraphy and structure of the Temsamane unit (eastern external Rif, Morocco). Revista de la Sociedad Geológica de España, 20, 187200.Google Scholar
Azdimousa, A., Poupeau, G., Rezqi, H., Asebriy, L., Bourgois, J. & Aït Brahim, L. (2006) Géodynamique des bordures méridionales de la mer d'Alboran; application de la stratigraphie séquentielle dans le bassin néogène de Boudinar (Rif oriental, Maroc). Bulletin de l'Institut Scientifique. Rabat, 28, 918.Google Scholar
Baccour, H., Medhioub, M., Jamoussi, F., Mhiri, T. & Daoud, A. (2008) Mineralogical evaluation and industrial applications of the Triassic clay deposits, southern Tunisia. Materials Characterization, 59, 16131622.CrossRefGoogle Scholar
Baghdad, A., Bouazi, R., Bouftouha, Y., Bouabsa, L. & Fagel, N. (2017) Mineralogical characterization of Neogene clay areas from the Jijel Basin for ceramic purposes (N.E. Algeria – Africa). Applied Clay Science, 136, 176183.Google Scholar
Bain, A.J. (1986) Composition and properties of clays used in various fields of ceramics: part I. Ceramic Forum International, 62, 536538.Google Scholar
Beaulieu, J. (1979) Identification géotechnique des matériaux argileux naturels par la mesure de leur surface spécifique au moyen de bleu de méthylène. Postgraduate thesis. University of Paris-Sud, Orsay, France.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803832.CrossRefGoogle Scholar
Boski, T., Pessoa, J., Pedro, P., Thorez, J., Dias, J.M.A. & Hall, I.R. (1998) Factors governing abundance of hydrolyzable amino acids in the sediments from the N.W. European Continental Margin (47–50°N). Progress in Oceanography, 42, 145164.CrossRefGoogle Scholar
Brindley, G.W. & Nakahira, M. (1959) The kaolinite–mullite reaction series: II. Metakolin. Journal of the American Ceramic Society, 42(7), 314318.CrossRefGoogle Scholar
Casagrande, A. (1947) Plasticity chart for the classification of cohesive soils. Transactions of the American Society of Civil Engineers, 73, 783811.Google Scholar
Chalouan, A., Michard, A., Kadiri, K.E., Negro, F., Lamotte, D.F.d., Soto, J.I. & Saddiqi, O. (2008) The Rif Belt. Pp. 203302 in Continental evolution: The Geology of Morocco: Structure, Stratigraphy, and Tectonics of the Africa–Atlantic–Mediterranean Triple Junction (Michard, A., Saddiqi, O., Chalouan, A., & Frizon de Lamotte, D., editors). Springer, Berlin, Germany.Google Scholar
Cook, H.E., Johnson, P.D., Matti, J.C. & Zemmels, I. (1975) Methods of sample preparation and X-ray diffraction data analysis, X-ray mineralogy laboratory, deep sea drilling project, University of California, Riverside. Initial Reports of the Deep Sea Drilling Project, 28, 9991007.Google Scholar
Cornée, J.-J., Münch, P., Achalhi, M., Merzeraud, G., Azdimousa, A., Quillévéré, F., Melinte-Dobrinescu, M., Chaix, C., Moussa, A.B., Lofi, J., Séranne, M. & Moissette, P. (2016) The Messinian erosional surface and early Pliocene reflooding in the Alboran Sea: new insights from the Boudinar Basin, Morocco. Sedimentary Geology, 333, 115129.CrossRefGoogle Scholar
Cunningham, K.J. & Collins, L.S. (2002) Controls on facies and sequence stratigraphy of an upper Miocene carbonate ramp and platform, Melilla Basin, N.E. Morocco. Sedimentary Geology, 146, 285304.CrossRefGoogle Scholar
Cunningham, K.J., Benson, R.H., Rakic-El Bied, K. & McKenna, L.W. (1997) Eustatic implications of late Miocene depositional sequences in the Melilla Basin, northeastern Morocco. Sedimentary Geology, 107, 147165.CrossRefGoogle Scholar
De Jong, E. (1999) Comparison of three methods of measuring surface area of soils. Canadian Journal of Soil Science, 79, 345351.CrossRefGoogle Scholar
De Kimpe, C.R., Laverdiere, M.R. & Martel, Y.A. (1979) Surface area and exchange capacity of clay in relation to the mineralogical composition of gleysolic soils. Revue Canadienne de la Science du Sol, 59, 341347.Google Scholar
Dondi, M. (1999) Clay materials for ceramic tiles from the Sassuolo district (northern Apennines, Italy). Geology, composition and technological properties. Applied Clay Science, 15, 337366.CrossRefGoogle Scholar
Dondi, M., Raimondo, M. & Zanelli, C. (2014) Clays and bodies for ceramic tiles: reappraisal and technological classification. Applied Clay Science, 96, 91109.CrossRefGoogle Scholar
El Bakkali, S., Bourdier, J.-L. & Gourgaud, A. (1998a) Caractérisation et stratigraphie de dépôts volcanoclastiques marqueurs dans le Miocène supérieur du bassin de Melilla-bas Kert (Rif Oriental, Maroc). Comptes Rendus de l'Académie des Sciences – Series IIA – Earth and Planetary Science, 327, 93100.Google Scholar
El Bakkali, S., Gourgaud, A., Bourdier, J.-L., Bellon, H. & Gundogdu, N. (1998b) Post-collision Neogene volcanism of the eastern Rif (Morocco): magmatic evolution through time. Lithos, 45, 523543.CrossRefGoogle Scholar
El Boudour El Idrissi, H., Daoudi, L., El Ouahabi, M., Collin, F. & Fagel, N. (2018) The influence of clay composition and lithology on the industrial potential of earthenware. Construction and Building Materials, 172, 650659.CrossRefGoogle Scholar
El Ouahabi, M. (2013) Valorisation industrielle et artisanale des argiles du Maroc. PhD thesis. University of Liège, Liège, Belgium.Google Scholar
El Ouahabi, M., Daoudi, L. & Fagel, N. (2014b) Mineralogical and geotechnical characterization of clays from northern Morocco for their potential use in the ceramic industry. Clay Minerals, 49, 3551.CrossRefGoogle Scholar
El Ouahabi, M., Daoudi, L., De Vleeschouwer, F., Bindler, R. & Fagel, N. (2014a) Potentiality of clay raw materials from northern Morocco in ceramic industry: Tetouan and Meknes areas. Journal of Minerals and Materials Characterization and Engineering, 2, 145159.CrossRefGoogle Scholar
El Ouahabi, M., Daoudi, L., Hatert, F. & Fagel, N. (2015) Modified mineral phases during clay ceramic firing. Clays and Clay Minerals, 63, 404413.CrossRefGoogle Scholar
Essafi, M. (1986) Etude minéralogique et géochimique des bentonites du Rif nord oriental (bassin de Melilla-Nador). Doctoral thesis. University of Paris-Sud, Orsay, France.Google Scholar
Fagel, N., Boski, T., Likhoshway, L. & Oberhaensli, H. (2003) Late Quaternary clay mineral record in Central Lake Baikal (Academician Ridge, Ciberia). Palaeogeography, Palaeoclimatology, Palaeoecology, 193, 159179.CrossRefGoogle Scholar
Fagel, N., Thamó-Bózsó, E. & Heim, B. (2007) Mineralogical signatures of Lake Baikal sediments: sources of sediment supplies through Late Quaternary. Sedimentary Geology, 194, 3759.CrossRefGoogle Scholar
Ferrari, S. & Gualtieri, A.F. (2006) The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 32, 7381.CrossRefGoogle Scholar
Fiori, C., Fabbri, B., Donati, G. & Venturi, I. (1989) Mineralogical composition of the clay bodies used in the Italian tile industry. Applied Clay Science, 4, 461473.CrossRefGoogle Scholar
Frizon de Lamotte, D. & Leikine, M. (1985) Métamorphisme miocène du Rif oriental (Maroc) et individualisation de la nappe gravitaire d'Aknoul. Revue de Géologie Dynamique et de Géographie Physique, 26, 2942.Google Scholar
González, I., Galán, E., & Miras, A. (2006) Fluorine, chlorine and sulphur emissions from the Andalusian ceramic industry (Spain) – proposal for their reduction and estimation of threshold emission values. Applied Clay Science, 32, 34.CrossRefGoogle Scholar
González, I., Galán, E., Miras, A. & Aparicio, P. (1998) New uses for brick-making clay from the Bailén area (southern materials Spain). Clay Minerals, 33, 453465.CrossRefGoogle Scholar
Guillemin, M. & Houzay, J.-P. (1982) Le Néogène post-nappe et le Quaternaire du Rif nord-oriental. Stratigraphie et tectonique des bassins de Melilla, du Kert, de Boudinar, et du piedmont des Kebdana. Notes et Mémoires du Service Géologique du Maroc, Rabat, Morocco, 7 pp.Google Scholar
Harvey, C.C. & Lagaly, G. (2006) Conventional applications. Pp. 501540 in: Developments in Clay Science, Volume 1 (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Holtz, R.D. & Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 733 pp.Google Scholar
Jabaloy-Sánchez, A., Azdimousa, A., Booth-Rea, G., Asebriy, L., Vázquez-Vílchez, M., Martínez-Martínez, J.M. & Gabites, J. (2015) The structure of the Temsamane fold-and-thrust stack (eastern Rif, Morocco): evolution of a transpressional orogenic wedge. Tectonophysics, 663, 150176.CrossRefGoogle Scholar
Jordán, M.M., Sanfeliu, T. & De la Fuente, C. (2001) Firing transformations of Tertiary clays used in the manufacturing of ceramic tile bodies. Applied Clay Science, 20, 8795.CrossRefGoogle Scholar
Keith, K.S. & Murray, H.H. (2009) Common clays and shale. Pp. 369371 in Industrial Minerals and Rocks. Commodities, Markets, and Uses (Kogel, J.E., Trivedi, N.C., Barker, J.M. & Krukowski, S.T., editors). Society for Mining, Metallurgy, and Exploration, Englewood, CO, USA.Google Scholar
Kharbish, S. & Farhat, H.I. (2017) Mineralogy and physico-chemical properties of Wadi Badaa clays (Cairo–Suez district, Egypt): a prospective resource for the ceramic industry. Arabian Journal of Geosciences, 10, 174.CrossRefGoogle Scholar
Lisboa, J.V., Rocha, F. & de Oliveira, D.P.S. (2016) Application of multivariate analysis in the assessment of ceramic raw materials. Clays and Clay Minerals, 64, 767787.CrossRefGoogle Scholar
Mahmoudi, S., Bennour, A., Srasra, E. & Zargouni, F. (2017) Characterization, firing behavior and ceramic application of clays from the Gabes region in south Tunisia. Applied Clay Science, 135, 215225.CrossRefGoogle Scholar
Mazzoli, S. & Helman, M. (1994) Neogene patterns of relative plate motion for Africa–Europe: some implications for recent central Mediterranean tectonics. Geologische Rundschau, 83, 464468.Google Scholar
Mesrar, L., Akdim, M., Akhrif, I., Lakrim, M., El Aroussi, O., Chaouni, A. & Jabrane, R. (2013) Technological valorization of the Miocene clay in the region of Fez (Morocco): characterisation and exploitation possibilities. Present Environment and Sustainable Development, 7, 310317.Google Scholar
Mesrar, L., Lakrim, M., Akdim, M., Benamar, A., Es-Sbai, N. & Jabrane, R. (2017) Preparation and characterization of Miocene clay powders in the region of Taza (Morocco) after doping with metal oxides Al2O3. Pp. 19 in: Proceedings of the XII Maghreb Days of Material Sciences-Materials Science and Engineering. IOP Science, Fez, Morocco.Google Scholar
Michard, A., Chalouan, A., Feinberg, H., Goffé, B. & Montigny, R. (2002) How does the Alpine Belt end between Spain and Morocco? Bulletin de la Société Géologique de France, 173, 315.CrossRefGoogle Scholar
Milheiro, F.A.C., Freire, M.N., Silva, A.G.P. & Holanda, J.N.F. (2005) Densification behaviour of a red firing Brazilian kaolinitic clay. Ceramics International, 31, 757763.CrossRefGoogle Scholar
Milošević, M. & Logar, M. (2017) Properties and characterization of a clay raw material from Miličinica (Serbia) for use in the ceramic industry. Clay Minerals, 52, 329340.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Second Edition. Oxford University Press, Oxford, UK, 378 pp.Google Scholar
Mukherjee, S. (2013) The Science of Clays. Applications in Industry, Engineering and Environment. First Edition. Capital Publishing Company, New Delhi, India, 335 pp.Google Scholar
Münch, P., Cornée, J.J., Féraud, G., Martin, J.P.S., Ferrandini, M., Garcia, F., Conesa, G., Roger, S. & Moullade, M. (2006) Precise 40Ar/39Ar dating of volcanic tuffs within the upper Messinian sequences in the Melilla carbonate complex (N.E. Morocco): implications for the Messinian Salinity Crisis. International Journal of Earth Sciences, 95, 491503.CrossRefGoogle Scholar
Murray, H.H. (1994) Common clays. Pp. 247248 in: Industrial minerals and rocks (Carr, D.D., editor). Society for Mining, Metallurgy and Exploration, Englewood, CO, USA.Google Scholar
Murray, H.H. (2007) Applied Clay Mineralogy: Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite–Sepiolite, and Common Clays. Elsevier, Amsterdam, The Netherlands, 180pp.Google Scholar
Nasri, H., Elhammouti, K., Azdimousa, A., Achalhi, M. & Bengamra, S. (2016) Calcimetric and sedimentometric characterization of clay deposits in the Neogene Boudinar basin (north eastern Rif, Morocco): implication on the eustatic and hydrodynamic evolution of the basin and economic interest. Journal of Materials and Environmental Science, 7, 859870.Google Scholar
Negro, F., de Sigoyer, J., Goffé, B., Saddiqi, O. & Villa, I.M. (2008) Tectonic evolution of the Betic–Rif arc: new constraints from 40Ar/39Ar dating on white micas in the Temsamane units (External Rif, northern Morocco). Lithos, 106, 93109.CrossRefGoogle Scholar
Ngun, B.K., Mohamad, H., Sulaiman, S.K., Okada, K. & Ahmad, Z.A. (2011) Some ceramic properties of clays from central Cambodia. Applied Clay Science, 53, 3341.CrossRefGoogle Scholar
Nkalih Mefire, A., Yongue Fouateu, R., Njoya, A., Mache, J.R., Pilate, P., Hatert, F. & Fagel, N. (2018) Mineralogy and geochemical features of Foumban clay deposits (west Cameroon): genesis and potential applications. Clay Minerals, 53, 431445.CrossRefGoogle Scholar
Petersen, L.W., Moldrup, P., Jacobsen, O.H. & Rolston, D.E. (1996) Relations between specific surface area and soil physical and chemical properties. Soil Science, 161, 921.CrossRefGoogle Scholar
Petrick, K., Diedel, R., Peuker, M., Dieterle, M., Kuch, P., Kaden, R., Krolla-Sidenstein, P., Schuhmann, R. & Emmerich, K. (2011) Character and amount of I-S mixed-layer minerals and physical–chemical parameters of two ceramic clays from Westerwald, Germany: implications for processing properties. Clays and Clay Minerals, 59, 5874.CrossRefGoogle Scholar
Reeves, G.M., Sims, I. & Cripps, J. (2006) Clay Materials Used in Construction. The Geological Society, London, UK, 447 pp.Google Scholar
Rosenbaum, G., Lister, G.S. & Duboz, C. (2002) Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics, 359, 117129.CrossRefGoogle Scholar
Shepard, F.P. (1954) Nomenclature based on sand–silt–clay ratios. Journal of Sedimentary Petrology, 24, 151158.Google Scholar
Shvarzman, A., Kovler, K.G., Grader, G.S. & Shter, E. (2003) The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cement and Concrete Research, 33, 405416.CrossRefGoogle Scholar
Strazzera, B., Dondi, M. & Marsigli, M. (1997) Composition and ceramic properties of Tertiary clays from southern Sardinia (Italy). Applied Clay Science, 12, 247266.CrossRefGoogle Scholar
Tiller, K.G. & Smith, L.H. (1990) Limitations of EGME retention to estimate the surface area of soils. Australian Journal of Soil Research, 28, 126.CrossRefGoogle Scholar
Trindade, M.J., Dias, M.I., Coroado, J. & Rocha, F. (2009) Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science, 42, 345355.CrossRefGoogle Scholar
Trindade, M.J., Dias, M.I., Coroado, J.O. & Rocha, F. (2010) Firing tests on clay-rich raw materials from the Algarve basin (southern Portugal): study of mineral transformations with temperature. Clays and Clay Minerals, 58, 188204.CrossRefGoogle Scholar
Van Assen, E., Kuiper, K.F., Barhoun, N., Krijgsman, W. & Sierro, F.J. (2006) Messinian astrochronology of the Melilla basin: stepwise restriction of the Mediterranean–Atlantic connection through Morocco. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 1531.CrossRefGoogle Scholar
Wattanasiriwech, D., Srijan, K. & Wattanasiriwech, S. (2009) Vitrification of illitic clay from Malaysia. Applied Clay Science, 43, 5762.CrossRefGoogle Scholar
Wentworth, C.K. (1922) A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377392.CrossRefGoogle Scholar
Winkler, H.G.F. (1954) Bedeutung der korngrössenverteilung und des mineralbestandes von tonen für die herstellung grobkeramischer erzeugnisse. Berichte der Deutschen Keramischen Gesellschaft, 31, 337343.Google Scholar