Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T01:05:59.278Z Has data issue: false hasContentIssue false

Characterization of calcined red soil applied in the removal of methylene blue dye from wastewater to produce a hybrid pigment

Published online by Cambridge University Press:  05 June 2023

Daiane L. Silva
Affiliation:
Universidade Estadual do Centro-Oeste, Departamento de Química, Laboratório de Materiais e Compostos Inorgânicos, Alameda Élio Antonio Dalla Vecchia, Guarapuava, PR, Brazil
Nayara Balaba
Affiliation:
Universidade Estadual do Centro-Oeste, Departamento de Química, Laboratório de Materiais e Compostos Inorgânicos, Alameda Élio Antonio Dalla Vecchia, Guarapuava, PR, Brazil
Dienifer F.L. Horsth
Affiliation:
Universidade Estadual do Centro-Oeste, Departamento de Química, Laboratório de Materiais e Compostos Inorgânicos, Alameda Élio Antonio Dalla Vecchia, Guarapuava, PR, Brazil
Silvia Jaerger
Affiliation:
Universidade Estadual do Centro-Oeste, Departamento de Química, Laboratório de Materiais e Compostos Inorgânicos, Alameda Élio Antonio Dalla Vecchia, Guarapuava, PR, Brazil
Fauze J. Anaissi*
Affiliation:
Universidade Estadual do Centro-Oeste, Departamento de Química, Laboratório de Materiais e Compostos Inorgânicos, Alameda Élio Antonio Dalla Vecchia, Guarapuava, PR, Brazil
*
Corresponding author: Fauze J. Anaissi; Email: [email protected]

Abstract

We obtained natural red soil (RS), rich in iron, from the region of Palotina in the state of Paraná, Brazil. The RS sample was purified by suspension in water and sieved to remove plant particulates. It was then treated thermally at 800°C to remove organic volatiles; this sample was called RS800. The samples were characterized using X-ray diffraction, X-ray fluorescence, infrared and electronic spectroscopy, ζ-potential analysis and scanning electron microscopy. Colorimetric studies were performed according to the CIEL*a*b* system. Tests have shown that RS800 has the ability to remove methylene blue (MB) dye from wastewater. Thus, it was used as an adsorbent at various temperatures (25, 35, 45°C). According to the Langmuir model, the maximum adsorption capacity (qmax) was 23.256 mg g–1 (25°C). Unexpectedly, increasing temperature reduced qmax to 21.659 mg g–1 at 35°C and to 21.186 mg g–1 at 45°C. Therefore, RS800 must be used at room temperature (25°C), making its application in large-scale wastewater treatment feasible. After using RS800 as an adsorbent, the solids were filtered, dried, pulverized, and used as hybrid pigments in commercial white paints. Pigmented paints were used to paint a plaster specimen and colorimetric measurement was performed. These paints were tested for colour stability in acidic and alkaline environments. The results indicate that RS800 is efficient in the treatment of water contaminated with cationic dyes and can be reused as a hybrid pigment.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Professor Chun Hui Zhou

References

Aksu, Z. (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 9971026.CrossRefGoogle Scholar
Almeida, C.A.P., Debacher, N.A., Downs, A.J., Cottet, L. & Mello, C.A.D. (2009) Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. Journal of Colloid and Interface Science, 332, 4653.CrossRefGoogle ScholarPubMed
Almeida, T.H., Almeida, D.H., Gonçalves, D. & Lahr, F.A.R. (2021) Color variations in CIELAB coordinates for softwoods and hardwoods under the influence of artificial and natural weathering. Journal of Building Engineering, 35, 101965.CrossRefGoogle Scholar
Alver, E., Metin, A.Ü. & Brouers, F. (2020) Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International Journal of Biological Macromolecules, 154, 104113.CrossRefGoogle ScholarPubMed
Anantha, M.S., Olivera, S., Hu, C., Jayanna, B.K., Reddy, N., Venkatesh, K. et al. (2020) Comparison of the photocatalytic, adsorption and electrochemical methods for the removal of cationic dyes from aqueous solutions. Environmental Technology and Innovation, 17, 100612.CrossRefGoogle Scholar
Anvari, F., Keirkhah, M. & Amraei, R. (2014) Treatment of synthetic textile wastewater by combination of original article treatment of synthetic textile wastewater by combination of coagulation/flocculation process and electron beam irradiation. Journal of Community Health Research, 3, 3138.Google Scholar
Benhachem, F.-Z., Attar, T. & Bouabdallah, F. (2019) Kinetic study of adsorption methylene blue dye from aqueous solutions using activated carbon from starch. Chemical Review and Letters, 2, 3339.Google Scholar
Benites, V.M., Mendonça, E.S., Schaefer, C.E.R. & Martin Neto, L. (1999) Caracterização dos ácidos húmicos extraídos de um latossolo vermelho-amarelo e de um podzol por análise termodiferencial e pela espectroscopia de absorção no infravermelho. Revista Brasileira de Ciência do Solo, 23, 543551.CrossRefGoogle Scholar
Bingül, Z. (2022) Determination of affecting parameters on removal of methylene blue dyestuff from aqueous solutions using natural clay: Isotherm, kinetic, and thermodynamic studies. Journal of Molecular Structure, 1250, 131729.CrossRefGoogle Scholar
Borth, K.W., Galdino, C.W., Teixeira, V.C. & Anaissi, F.J. (2021) Iron oxide nanoparticles obtained from steel waste recycling as a green alternative for Congo red dye fast adsorption. Applied Surface Science, 546, 149126.CrossRefGoogle Scholar
Bortoluzzi, E.C., Pernes, M. & Tessier, D. (2007) Interestratificado caulinita-esmectita em um argissolo desenvolvido a partir de rocha sedimentar do Sul do Brasil. Revista Brasileira de Ciência do Solo, 31, 12911300.CrossRefGoogle Scholar
Chaari, I., Fakhfakh, E., Medhioub, M. & Jamoussi, F. (2019) Comparative study on adsorption of cationic and anionic dyes by smectite rich natural clays. Journal of Molecular Structure, 1179, 672677.CrossRefGoogle Scholar
Conama (2005) Conselho Nacional do Meio Ambiente. Resolução no 357, 17 de março de 2005, Art. 15-III e Art. 16-I. Ministério do Meio Ambiente, Brasilia, Brazil, 36 pp.Google Scholar
Cullity, B.D. & Stock, S.R. (1956) Elements of X-Ray Diffraction. Addison-Wesley Publishing Company, Inc., Boston, MA, USA, 555 pp.Google Scholar
Deotale, A.J. & Nandedkar, R.V. (2016) Correlation between particle size, strain and band gap of iron oxide nanoparticles. Materials Today: Proceedings, 3, 20692076.Google Scholar
dos Santos, H.G. & Zaroni, M.J. (2021) Teor de óxidos de ferro. EMBRAPA (Brazilian Agricultural Research Corporation). Available at: https://www.embrapa.br/en/agencia-de-informacao-tecnologica/tematicas/solos-tropicais/sibcs/classificacao-do-perfil/atributos-diagnosticos/teor-de-oxidos-de-ferroGoogle Scholar
Ezati, P., Bang, Y.-J. & Rhim, J.-W. (2021) Preparation of a shikonin-based pH-sensitive color indicator for monitoring the freshness of fish and pork. Food Chemistry, 337, 127995.CrossRefGoogle ScholarPubMed
Fontes, M.P.F., de Camargo, O.A. & Sposito, G. (2001) Eletroquímica das partículas coloidais e sua relação com a mineralogia de solos altamente intemperizados. Scientia Agricola, 58, 627646.CrossRefGoogle Scholar
Gargori, C., Cerro, S., Galindo, R., García, A., Llusar, M. & Monrós, G. (2012) Iron and chromium doped perovskite (CaMO3 M = Ti, Zr) ceramic pigments, effect of mineralizer. Ceramics International, 38, 44534460.CrossRefGoogle Scholar
Gonçalves, M., de Castro, C.S., Oliveira, L.C.A. & Guerreiro, M.C. (2009) Síntese e caracterização de nanopartículas de óxido de ferro suportadas em matriz carbonácea: remoção do corante orgânico azul de metileno em água. Quimica Nova, 32, 17231726.CrossRefGoogle Scholar
Gonçalves, D., Leite, W.C., Brinatti, A.M., Saab, S.C., Iarosz, K.C., Mascarenhas, Y.P. et al. (2008) Mineralogia de um latossolo vermelho distrófico submetido a diferentes manejos por 24 anos. Revista Brasileira de Ciência do Solo, 32, 26472652.CrossRefGoogle Scholar
Güleç, F., Williams, O., Kostas, E.T., Samson, A., Stevens, L.A. & Lester, E. (2022) A comprehensive comparative study on methylene blue removal from aqueous solution using biochars produced from rapeseed, whitewood, and seaweed via different thermal conversion technologies. Fuel, 330, 125428.CrossRefGoogle Scholar
Hameed, B., Din, A. & Ahmad, A. (2007) Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. Journal of Hazardous Materials, 141, 819825.CrossRefGoogle ScholarPubMed
Honorato, A.C., Machado, J.M., Celante, G., Borges, W.G.P., Dragunski, D.C. & Caetano, J. (2015) Biosorption of methylene blue using agro-industrial residues. Revista Brasileira de Engenharia Agricola e Ambiental, 19, 705710.CrossRefGoogle Scholar
Horsth, D.F.L., Primo, J.O., Dalpasquale, M., Bittencourt, C. & Anaissi, F.J. (2021) Colored aluminates pigments obtained from metallic aluminum waste, an opportunity in the circular economy. Cleaner Engineering and Technology, 5, 100313.CrossRefGoogle Scholar
Horsth, D.F.L., Primo, J.O., Balaba, N., Anaissi, F.J. & Bittencourt, C. (2023) Color stability of blue aluminates obtained from recycling and applied as pigments. RSC Sustainability, 1, 159166.CrossRefGoogle Scholar
Inda Junior, A.V. & Kämpf, N. (2005) Variabilidade de goethita e hematita via dissolução redutiva em solos de região tropical e subtropical. Revista Brasileira de Ciência do Solo, 29, 851866.CrossRefGoogle Scholar
Inyinbor, A.A., Adekola, F.A. & Olatunji, G.A. (2016) Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resources and Industry, 15, 1427.CrossRefGoogle Scholar
Jaerger, S., Dos Santos, A., Fernandes, A.N. & Almeida, C.A.P. (2015) Removal of p-nitrophenol from aqueous solution using Brazilian peat: kinetic and thermodynamic studies. Water, Air, and Soil Pollution, 226, 236.CrossRefGoogle Scholar
Ker, J.C. (1997) Latossolos do Brasil: uma revisão. Geonomos, 5, 1740.Google Scholar
Kumar, R.S. & Rajkumar, P. (2014) Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Physics and Technology, 67, 3041.CrossRefGoogle Scholar
Leon, L. (1996) Amperometric flow-injection method for the assay of l-ascorbic acid based on the photochemical reduction of methylene blue. Talanta, 43, 12751279.CrossRefGoogle ScholarPubMed
Lima, J.M., Anderson, S.J. & Curi, N. (2000) Phosphate-induced clay dispersion as related to aggregate size and composition in hapludoxs. Soil Science Society of America Journal, 64, 892897.CrossRefGoogle Scholar
Martinelli, A.C., Barrada, R.V., Ferreira, S.A.D., de Freitas, M.B.J.G. & Lelis, M.F.F. (2014) Evaluation of the leached cadmium and nickel from the degradation of nickel–cadmium batteries in a column of soil. Química Nova, 37, 465472.CrossRefGoogle Scholar
Meili, L., Lins, P.V.S., Costa, M.T., Almeida, R.L., Abud, A.K.S., Soletti, J.I. et al. (2019) Adsorption of methylene blue on agroindustrial wastes: experimental investigation and phenomenological modelling. Progress in Biophysics and Molecular Biology, 141, 6071.CrossRefGoogle ScholarPubMed
Melo, V.F. & Alleoni, L.R.F. (2009) Química e Mineralogia do Solo, Parte II – Aplicações, 1st edition. Sociedade Brasileira de Ciência do Solo, Viçosa, Brazil, 685 pp.Google Scholar
Moraes, É.D.P., Machado, N.R.C.F. & Pergher, S.B.C. (2003) Síntese da zeólita a partir de um caulim brasileiro termicamente ativado. Acta Scientiarum. Technology, 25, 6369.Google Scholar
Morales-Marín, A., Ayastuy, J.L., Iriarte-Velasco, U. & Gutiérrez-Ortiz, M.A. (2019) Nickel aluminate spinel-derived catalysts for the aqueous phase reforming of glycerol: effect of reduction temperature. Applied Catalysis B: Environmental, 244, 931945.CrossRefGoogle Scholar
Moreira, S.A., Sousa, F.W., Oliveira, A.G., Nascimento, R.F. & de Brito, E.S. (2009) Remoção de metais de solução aquosa usando bagaço de caju. Química Nova, 32, 17171722.CrossRefGoogle Scholar
Munir, M., Nazar, M.F., Zafar, M.N., Zubair, M., Ashfaq, M., Hosseini-Bandegharaei, A. et al. (2020) Effective adsorptive removal of methylene blue from water by didodecyldimethylammonium bromide-modified brown clay. ACS Omega, 5, 1671116721.CrossRefGoogle ScholarPubMed
Nayl, A.A., Abd-Elhamid, A.I., Arafa, W.A.A., Ahmed, I.M., AbdEl-Rahman, A.M.E., Soliman, H.M.A. et al. (2023) A novel P@SiO2 nano-composite as effective adsorbent to remove methylene blue dye from aqueous media. Materials, 16, 514.CrossRefGoogle Scholar
Niinimäki, K., Peters, G., Dahlbo, H., Perry, P., Rissanen, T. & Gwilt, A. (2020) The environmental price of fast fashion. Nature Reviews Earth and Environment, 1, 189200.CrossRefGoogle Scholar
Oladoye, P.O., Ajiboye, T.O., Omotola, E.O. & Oyewola, O.J. (2022) Methylene blue dye: toxicity and potential elimination technology from wastewater. Results in Engineering, 16, 100678.CrossRefGoogle Scholar
Oliveira, L.C.A., Fabris, J.D. & Pereira, M.C. (2013) Óxidos de ferro e suas aplicações em processos catalíticos: uma revisão. Quimica Nova, 36, 123130.CrossRefGoogle Scholar
Pereira, L. & Alves, M. (2012) Dyes – environmental impact and remediation. Pp. 111162 in: Environmental Protection Strategies for Sustainable Development (Malik, A. & Grohmann, E., editors). Springer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Quindici, M. (2013) O Segredo das Cores. All Print Editora, São Paulo, Brazil, 204 pp.Google Scholar
Rodrigues, I.A., Villalba, J.C., Santos, M.J., Melquiades, F.L. & Anaissi, F.J. (2020) Smectitic clays enriched with ferric ions for the rapid removal of anionic dyes in aqueous media. Clay Minerals, 55, 1223.CrossRefGoogle Scholar
Sahu, S., Pahi, S., Tripathy, S., Singh, S.K., Behera, A., Sahu, U.K. & Patel, R.K. (2020) Adsorption of methylene blue on chemically modified lychee seed biochar: dynamic, equilibrium, and thermodynamic study. Journal of Molecular Liquids, 315, 113743.CrossRefGoogle Scholar
Shen, D., Fan, J., Zhou, W., Gao, B., Yue, Q. & Kang, Q. (2009) Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. Journal of Hazardous Materials, 172, 99107.CrossRefGoogle ScholarPubMed
Wang, L. (2009) Aqueous organic dye discoloration induced by contact glow discharge electrolysis. Journal of Hazardous Materials, 171, 577581.CrossRefGoogle ScholarPubMed
Xu, H. & Van Deventer, J.S.J. (2002) Microstructural characterisation of geopolymers synthesised from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM. Cement and Concrete Research, 32, 17051716.CrossRefGoogle Scholar
Zhao, W., Shi, H. & Wang, D. (2004) Ozonation of cationic red X-GRL in aqueous solution: degradation and mechanism. Chemosphere, 57, 11891199.CrossRefGoogle ScholarPubMed