Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-03T19:12:20.917Z Has data issue: false hasContentIssue false

Characteristics of clays in an Oxisol-Spodosol toposequence in Amazonia (Brazil)

Published online by Cambridge University Press:  09 July 2018

S. Bravard
Affiliation:
UA 721 du CNRS, Laboratoire de Pédologie, Faculté des Sciences, 86022 Poitiers Cédex, France
D. Righi
Affiliation:
UA 721 du CNRS, Laboratoire de Pédologie, Faculté des Sciences, 86022 Poitiers Cédex, France

Abstract

The clay fraction of soils from a toposequence developed on a sandy clay Tertiary sediment in the Brazilian Amazonia was studied. Clayey Acrorthox located at the upper part of the sequence have transformed progressively into sandy Tropohumods down the slope. Along the slope important chemical and mineralogical changes linked to modifications in the weathering conditions were observed. In the Acrorthox the hydrolysis process largely prevails and the clay fraction is composed mainly of Fe-rich kaolinite. Fe and Al amorphous compounds become increasingly abundant along the slope. In the Spodosols, hydrolysis and acidocomplexolysis processes have both been effective, and the clay fractions contain not only more gibbsite, but also amorphous materials which are particularly abundant in the Bh horizons.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cases, J.M., Liétard, O., Yvon, J. & Delon, J.F. (1982) Etudes des proprietes cristallochimiques, superficielles de kaolinites desordonnees. Bull. Miner., 105, 439–455.Google Scholar
Chauvel, A., Lucas, Y. & Boulet, R. (1987) On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Experientia, 43, 234–241.Google Scholar
Didier, P., Nahon, D., Fritz, B. & Tardy, Y. (1983) Activity of water as a geochemical controlling factor in ferri-cretes. A thermo-dynamic model in the system: kaolinite, Fe-oxyhydroxides, Fe-Al. Sciences geologiques, 71, 35–44.Google Scholar
Guillet, B. & Jeanroy, E. (1985) Note sur une méthode chimique d'évaluation des substitutions alumineuses dans les oxydes et/ou oxyhydroxydes de fer. Sci. du Sol, 1, 37–40.Google Scholar
Herbillon, A.J., Mestdagh, M.M., Vielvoye, L. & Derouane, E.G. (1976) Iron in kaolinite with special references to kaolinite from tropical soils. Clay Miner., 11, 201–220.CrossRefGoogle Scholar
Jeanroy, E. (1972) Analyse totale des silicates naturels par spectrophotometxie d'absorption. Application au sol et a ses constituants. Chim. Analyt., 54, 159–166.Google Scholar
Jeanroy, E. (1983) Diagnostic des formes du fer dans les pédogenèses temperees. Evaluation par les réactifs chimiques d'extraction et apports de la spectrometrie Mössbauer. Thése, Univ. Nancy I, France.Google Scholar
Klinge, H. (1965) Podzol soils in the Amazon Basin. J. Soil Sci., 16, 96103.CrossRefGoogle Scholar
Lucas, Y., Chauvel, A., Boulet, R., Ranzani, G. & Scatolini, F. (1984) Transisad Latossolos–Podzois sobre a formaçad Barreras na regiaô de Manaus, Amazdnia. R. Bras. Ci. Solo 8, 325335.Google Scholar
Lucas, Y., Boulet, R., Chauvel, A. & Veillon, L. (1987) Systemes sols ferrallitiques-podzols en region amazonienne. Pp. 5365 in: ef (Righi, D. & Chauvel, A., editors). AFES et INRA, Plaisir et Paris.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 7, 317–327.Google Scholar
Mestdagh, M.M., Herbillon, A.J., Rodrique, L. & Rouxhet, P.G. (1982) Evaluation du role du fer structural sur la cristallinite des kaolinites. Bull. Miner., 105, 457–466.Google Scholar
Ng Kee Kwong, K.F. & Huang, P.M. (1977) Influence of citric acid on the hydrolytic reactions of aluminium. Soil Sci. Soc. Am. J., 41, 692–697.Google Scholar
Norrish, K. & Taylor, R.M. (1961) The isomorphous replacement of iron by aluminium in soil goethites. J. Soil Sci., 12, 294306.Google Scholar
Pa Ho Hsu (1977) Aluminium hydroxides and oxyhydroxides. Pp. 99142 in: Minerals in Soil Environments. (Dixon, J.B. & Weed, S.B., editors). Soil Sci. Soc. Amer. Madison.Google Scholar
Righi, D. (1977) Genèse et évolution des podzols et des sols hydromorphes des Landes du Mèdoc. Thèse Doct. ès- Sci. Nat. Univ. Poitiers, France.Google Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraction mit Ammoniumoxalat- Losung. Z. Pflanzenemahr., Dung. Bodenkunde, 105, 194–212.Google Scholar
Schwertmann, U., Fischer, W.R. & Papendorf, H. (1968) The influence of organic compounds on the formation of iron oxides. 9th Int. Cong. Soil Sci. Trans. Adelaide,, 1, 645–655.Google Scholar
Schwertmann, U. & Kampf, N. (1985) Properties of goethite and hematite in kaolinitic soils of Southern and Central Brazil. Soil Sci., 139, 344–350.Google Scholar
Schwertmann, U., Kodama, H. & Fischer, W.R. (1986) Mutual interactions between organics and iron oxides. Soil Sci. Soc. Am. Spec. Pub., 17, 223–250.Google Scholar
Thiel, R. (1963) Zum system FeOOH-AlOOH. Z. anorg. Allg. Chem. Hambourg, 326, 70–76.Google Scholar
Trollakd, F. (1986) Physicochimie des cuirasses lateritiques. Domaines de stabUite des oxydes et hydroxydes defer et d'aluminium. Thése Doct., Univ. Strasbourg, France.Google Scholar
Turenne, J.F. (1975) Modes d'humification et différenciation podzolique dans deux toposequences guyanaises.Thése Doct. és-Sci. Nat. Univ. Nancy, France.Google Scholar
USDA (1975) Soil Taxonomy. USDA-SCS Agric. Handb. U.S. Gov. Print. Office, Washington, D.C.Google Scholar