Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T05:16:18.108Z Has data issue: false hasContentIssue false

Artificial colouration of smectite through adsorbing dyes from wastewater to make a hybrid pigment

Published online by Cambridge University Press:  29 November 2022

Itamar A. Rodrigues
Affiliation:
Universidade Estadual do Centro-Oeste, Departamento de Química, Laboratório de Materiais e Compostos Inorgânicos, Alameda Elio Antônio Dalla Vecchia 838, 85040-167, Guarapuava, PR, Brazil
Fauze J. Anaissi*
Affiliation:
Universidade Estadual do Centro-Oeste, Departamento de Química, Laboratório de Materiais e Compostos Inorgânicos, Alameda Elio Antônio Dalla Vecchia 838, 85040-167, Guarapuava, PR, Brazil

Abstract

Artificially coloured smectites (smectite pigments) were prepared via the sorption of anionic dyes on smectite saturated with ferric ions (Fe-smectite). Fe-smectite has a surface charge and is capable of decolourizing aqueous solutions containing single-component anionic dyes (Amaranth, Brilliant blue FCF and Tartrazine) or multi-component dyes (dye mixtures). Kinetic and equilibrium models were used to describe the sorption of individual dyes, whereas the decolourization of the multi-component system was studied by monitoring the reduction in the intensity of the absorption bands in the visible light region. The Langmuir–Freundlich dual-site model presented the best fit to the experimental data, and the sorption kinetics followed the pseudo-second order model. The smectite pigments were dispersed in colourless paint (10%, w/w), acting as organic–inorganic hybrid pigments. Colorimetric measurements of the powdered smectite pigments dispersed in colourless real-estate paint showed chemical compatibility without the need for solvents as dispersants. These properties allow the application of coloured smectites as pigments in a sustainable circular economy.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Zhou Chun-Hui

References

Aksu, Z. (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 9971026.CrossRefGoogle Scholar
Albroomi, H.I., Elsayed, M.A., Baraka, A. & Abdelmaged, M.A. (2017) Batch and fixed-bed sorption of Tartrazine azo-dye onto activated carbon prepared from apricot stones. Applied Water Science, 7, 20632074.CrossRefGoogle Scholar
Anvari, F., Kheirkhah, M. & Amraei, R. (2014) Treatment of synthetic textile wastewater by a combination of coagulation/flocculation process and electron beam irradiation. Journal of Community Health Research, 3, 3138.Google Scholar
Ayari, F., Manai, G., Khelifi, S. & Trabelsi-Ayadi, M. (2019) Treatment of anionic dye aqueous solution using Ti, HDTMA and Al/Fe pillared bentonite. Essay to regenerate the sorbent. Journal of Saudi Chemical Society, 23, 294306.CrossRefGoogle Scholar
Banerjee, S. & Chattopadhyaya, M.C. (2017) Sorption characteristics for the removal of a toxic dye, Tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry, 10, 16291638.CrossRefGoogle Scholar
Borgnino, L., Avena, M.J. & De Pauli, C.P. (2009) Synthesis and characterization of Fe(III)-montmorillonites for phosphate sorption. Colloids and Surfaces A: Physicochemical end Engineering Aspects, 341, 4652.CrossRefGoogle Scholar
Brownlow, A.H. (1975) Geochemistry, 1st edition. USA: Prentice Hall, Hoboken, NJ, USA, 580 pp.Google Scholar
Constantino, L.V., Quirino, J.N., Monteiro, A.M., Abrão, T., Parreira, P.S., Urbano, A. & Santos, M.J. (2017) Sorption and desorption of silver ions by bentonite clays. Environmental Science and Pollution Research International, 24, 1134911359.CrossRefGoogle ScholarPubMed
Dalpasquale, M., Budziak-Parabocz, C.R. & Anaissi, F.J. (2018) Influence of the calcination temperature on the colorimetric properties of Co, Fe and Ni aluminates in solid state reactions aided by citrus pectin. Orbital: The Electronic Journal of Chemistry, 10, 191199.Google Scholar
Dotto, G.L., Vieira, M.L.G., Gonçalves, J.O. & Pinto, L.A.A. (2011) Remoção dos corantes azul brilhante, amarelo crepúsculo e amarelo tartrazina de soluções aquosas utilizando carvão ativado, terra ativada, terra diatomácea, quitina e quitosana: estudos de equilíbrio e termodinâmica. Química Nova, 34, 11931199.CrossRefGoogle Scholar
DrLange (1994) Colour review. DrLange Application Report No.8e. DrLange, St Louis, MO, USA.Google Scholar
Falone, S.Z. & Vieira, E.M. (2004) Adsorption/desorption of the explosive tetryl in peat and yellow-red Argissol. Química Nova, 27, 849854.CrossRefGoogle Scholar
Feddal, I., Ramdani, A., Taleb, S., Gaigneaux, E.M., Batis, N. & Ghaffour, N. (2014) Sorption capacity of methylene blue, an organic pollutant, by montmorillonite clay. Desalination and Water Treatment, 52, 26542661.CrossRefGoogle Scholar
Freundlich, H.M.F. (1906) Uber die Sorption in Losungen (adsorption in solution). Zeitschrift für Physikalische Chemie, 57, 385490.Google Scholar
Fu, F., Gao, Z., Gao, L. & Li, D. (2011) Effective sorption of anionic dye, Alizarin red S, from aqueous solutions on activated clay modified by iron oxide. Industrial & Engineering Chemistry Research, 50, 97129717.CrossRefGoogle Scholar
Giles, C.H., Smith, D. & Huitson, A. (1974) A general treatment and classification of the solute sorption isotherm. I. Theoretical. Journal of Colloid and Interface Science, 47, 755765.CrossRefGoogle Scholar
Gong, R., Ding, Y., Li, M., Yang, C., Liu, H. & Sun, Y. (2005) Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes and Pigments, 64, 187192.CrossRefGoogle Scholar
Grygar, T., Hradil, D., Bezdicka, P.B., Dousova, B., Capek, L. & Schneeweiss, O. (2007) Fe(III)-modified montmorillonite and bentonite: synthesis, chemical and UV–Vis spectral characterization, arsenic sorption, and catalysis of oxidative dehydrogenation of propane. Clays and Clay Minerals, 55, 165176.CrossRefGoogle Scholar
Guilarduci, V.V.S., Mesquita, J.P., Martelli, P.B. & Gorgulho, H.F. (2006) Phenol adsorption on commercial active carbon under alkaline conditions. Química Nova, 29, 12261232.CrossRefGoogle Scholar
Guillermin, D., Debroise, T., Trigueiro, P., de Viguerie, L., Rigaud, B., Morlet-Savary, F. et al. (2019) New pigments based on carminic acid and smectites: a molecular investigation. Dyes and Pigments, 160, 971982.CrossRefGoogle Scholar
Hernández-Hernández, K.A., Solache-Ríos, M. & Díaz-Nava, M.C. (2013) Removal of Brilliant blue FCF from aqueous solutions using an unmodified and iron-modified bentonite and the thermodynamic parameters of the process. Water, Air and Soil Pollution, 224, 1562.CrossRefGoogle Scholar
Klete, C., Barry, A., Balti, I., Lelli, P., Schoenstein, F. & Jouini, N. (2014) Nickel doped zinc oxide as a potential sorbent for decolorization of specific dyes, Methyl orange and Tartrazine by sorption process. Journal of Environmental Chemical Engineering, 2, 914926.CrossRefGoogle Scholar
Kyzioł-Komosińska, J., Rosik-Dulewska, C., Pajak, M & Krzyżewska, I. (2014) Sorption of anionic dyes onto natural, thermally and chemically modified smectite clays. Polish Journal of Chemical Technology, 16, 3340.CrossRefGoogle Scholar
Laguna, H., Loera, S., Ibarra, I.A., Lima, E., Vera, M.A. & Lara, V. (2007) Azoic dyes hosted on hydrotalcite-like compounds: non-toxic hybrid pigments. Microporous and Mesoporous Materials, 98, 234241.CrossRefGoogle Scholar
Langmuir, I. (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, 22212295.CrossRefGoogle Scholar
Lee, J.J. (2015) Sorption kinetics and thermodynamics of Brilliant blue FCF dye onto coal based granular activated carbon. Journal of the Korean Industrial and Engineering Chemistry, 26, 210216.Google Scholar
Luengo, C., Puccia, V. & Avena, M. (2011) Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. Journal of Hazardous Materials, 186, 17131719.CrossRefGoogle ScholarPubMed
Malakootian, M., Hossaini, H., Asadipour, A. & Daneshkhah, M. (2018) Preparation and characterization of modified sepiolite for the removal of Acid green 20 from aqueous solutions: isotherm, kinetic and process. optimization. Applied Water Science, 8, 174.CrossRefGoogle Scholar
Mariani, F.Q., Villalba, J.C. & Anaissi, F.J. (2013) Caracterização Estrutural de Argilas Utilizando DRX com Luz Síncrotron, MEV, FTIR e TG-DTG-DTA. Orbital: The Electronic Journal of Chemistry, 5, 249256.Google Scholar
Marzec, A., Szadkowski, B., Rogowski, J., Maniukiewicz, W., Szynkowska, M.I. & Zaborski, M. (2019) Characteristics of hybrid pigments made from Alizarin dye on a mixed oxide host. Materials, 12, 360.CrossRefGoogle ScholarPubMed
Melo, V.F. & Alleoni, L.R. (2009) Química e Mineralogia do Solo, Parte I. Viçosa, Brazil, 529 pp.Google Scholar
Meunier, A. (2005) Clays, 1st edition. Springer Verlag, Berlin, Germany, 472 pp.Google Scholar
Mittal, A. (2006) Use of hen feathers as potential sorbent for the removal of a hazardous dye, Brilliant blue FCF, from wastewater. Journal of Hazardous Materials, 128, 233239.CrossRefGoogle Scholar
Moujahid, E.M., Lahkale, R., Ouassif, H., Bouragba, F.Z. & Elhatimi, W. (2019) New organic dye/anionic clay hybrid pigments: preparation, optical properties and structural stability. Dyes and Pigments, 162, 9981004.CrossRefGoogle Scholar
Murray, H.H. (2007) Applied Clay Mineralogy: Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays, 1st edition. Elsevier, Amsterdam, The Netherlands, 180 pp.Google Scholar
Nanganoa, L.T., Ketcha, J.M. & Ndi, J.N. (2014) Kinetic and equilibrium modeling of the sorption of Amaranth from aqueous solution onto smectite clay. Research Journal of Chemical Sciences, 4, 714.Google Scholar
Ndifor-Angwafor, N.G., Tiotsop, I.-H.K., Tchuifon, D.R.T., Sadeu, C.N., Bopda, A., Anagho, S.G. & Kamdem, T. A. (2017) Biosorption of Amaranth red in aqueous solution onto treated and untreated lignocellulosic materials (pineapple peelings and coconut shells). Journal of Materials and Environmental Sciences, 8, 41994212.CrossRefGoogle Scholar
Nogueira, F.G.E., Lopes, J.H., Silva, A.C., Lago, R.M., Fabris, J.D., & Oliveira, L.C.A. (2011) Catalysts based on clay and iron oxide for oxidation of toluene. Applied Clay Science, 51, 385389.CrossRefGoogle Scholar
Noroozi, B. & Sorial, G.A. (2013) Applicable models for multi-component sorption of dyes: a review. Journal of Environmental Sciences, 25, 419429.CrossRefGoogle Scholar
Oancea, P. & Meltzer, V. (2013) Photo-Fenton process for the degradation of Tartrazine (E102) in aqueous medium. Journal of the Taiwan Institute of Chemical Engineers, 44, 990994.CrossRefGoogle Scholar
Olivares, N.C., Díaz-Nava, M.C. & Solache-Ríos, M. (2016) Enhanced decolorization of dyes by an iron modified clay and thermodynamic parameters. Water Science and Technology, 73, 20072016.CrossRefGoogle Scholar
Ong, L.K., Soetaredjo, F.E., Kurniawan, A., Ayucitra, A., Liu, J.C. & Ismadji, S. (2014) Investigation on the montmorillonite sorption of biocidal compounds incorporating thermodynamical-based multicomponent sorption isotherm. Chemical Engineering Journal, 241, 918.CrossRefGoogle Scholar
Ozcan, A.S., Erdem, B. & Ozcan, A. (2004) Sorption of Acid blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. Journal of Colloid and Interface Science, 280, 4454.CrossRefGoogle Scholar
Paiva, L.B., Morales, A.R. & Díaz, F.R.V. (2008) Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. Cerâmica, 54, 213226.CrossRefGoogle Scholar
Rodrigues, I.A., Villalba, J.C., Santos, M.J., Melquiades, F.L. & Anaissi, F.J. (2020) Smectitic clays enriched with ferric ions for the rapid removal of anionic dyes in aqueous media. Clay Minerals, 55, 1223.CrossRefGoogle Scholar
Rouquerol, F., Rouquerol, J. & Llwellyn, P. (2006) Thermal analysis. Pp. 361379 in: Developments in Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Sahnoun, S. & Boutahala, M. (2018) Sorption removal of Tartrazine by chitosan/polyaniline composite: kinetics and equilibrium studies. International Journal of Biological Macromolecules, 114, 13451353.CrossRefGoogle Scholar
Sahnoun, S., Boutahala, M., Tiar, C. & Kahoul, A. (2018) Sorption of Tartrazine from an aqueous solution by octadecyltrimethylammonium bromide-modified bentonite: kinetics and isotherm modeling. Comptes Rendus Chimie, 21, 391398.CrossRefGoogle Scholar
Salem, A.-N.M., Ahmed, M.A. & El-Shahat, M.F. (2016) Selective adsorption of Amaranth dye on Fe3O4/MgO nanoparticles. Journal of Molecular Liquids, 219, 780788,CrossRefGoogle Scholar
Shen, D., Fan, J., Zhou, W., Gao, B., Yue, Q. & Kang, Q. (2009) Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. Journal of Hazardous Materials, 172, 99107.CrossRefGoogle ScholarPubMed
Silva, G.T.M., Silva, C.P., Gehlen, M.H., Oake, J., Bohne, C. & Quina, F.H. (2018) Organic/inorganic hybrid pigments from flavylium cations and palygorskite. Applied Clay Science, 162, 478486.CrossRefGoogle Scholar
Siwinska-Stefanska, K., Nowacka, M., Kołodziejczak-Radzimska, A. & Jesionowski, T. (2012) Preparation of hybrid pigments via sorption of selected food dyes onto inorganic oxides based on anatase titanium dioxide. Dyes and Pigments, 94, 338348.CrossRefGoogle Scholar
Sposito, G. (1980) Derivation of the Freundlich equation for ion exchange reactions in soils. Soil Science Society of America Journal, 44, 652654.CrossRefGoogle Scholar
Subramanyam, B. & Ashutosh, D. (2012) Sorption isotherm modeling of phenol onto natural soils – applicability of various isotherm models. International Journal of Environmental Research, 6, 265276.Google Scholar
Uddin, M.K. (2017) A review on the sorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438462.CrossRefGoogle Scholar
Ullah, R., Iftikhar, F.J., Ajmal, M., Shah, A., Akhter, M.S., Ullah, H. & Waseem, A. (2020) Modified clays as an efficient adsorbent for Brilliant green, Ethyl violet and Allura red dyes: kinetic and thermodynamic studies. Polish Journal of Environmental Studies, 29, 38313839.CrossRefGoogle Scholar
Umpleby, R.J., Baxter, S.C., Chen, Y., Shah, R.N. & Shimizu, K.D. (2001) Characterization of molecularly imprinted polymers with the Langmuir–Freundlich isotherm. Analytical Chemistry, 73, 45844591.Google ScholarPubMed
Zhang, Y., Fei, X., Yu, L., Cao, L. & Zhang, B. (2014) Preparation and characterisation of silica supported organic hybrid pigments. Pigment & Resin Technology, 43, 325331.CrossRefGoogle Scholar
Supplementary material: File

Rodrigues and Anaissi supplementary material

Rodrigues and Anaissi supplementary material

Download Rodrigues and Anaissi supplementary material(File)
File 592.9 KB