Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-17T16:08:50.508Z Has data issue: false hasContentIssue false

An 57Fe Mössbauer spectral study of vermiculitization in the Palabora Complex, Republic of South Africa

Published online by Cambridge University Press:  09 July 2018

R. Badreddine
Affiliation:
Laboratory of Mineralogy, University of Liège, B18, B-4000 Sart-Tilman, Belgium
F. Grandjean*
Affiliation:
Institute of Physics, University of Liège, B5, B-4000 Sart-Tilman, Belgium
D. Vandormael
Affiliation:
Institute of Physics, University of Liège, B5, B-4000 Sart-Tilman, Belgium
A. -M. Fransolet
Affiliation:
Laboratory of Mineralogy, University of Liège, B18, B-4000 Sart-Tilman, Belgium
G. J. Long
Affiliation:
Department of Chemistry, University of Missouri-Rolla, RollaMO 65409-0010, USA
*

Abstract

Two phlogopite, two mixed-layer phlogopite-vermiculite, and two vermiculite samples collected from the Palabora Complex of South Africa have been investigated at 295 K by X-ray diffraction, chemical analysis, and Mössbauer spectroscopy. In addition the temperature dependence of the Mössbauer spectra has been measured between 95 and 295 K for one phlogopite and one mixed-layer sample. The results of the chemical analyses and the Mössbauer spectra improve our knowledge of the vermiculitization process in the Palabora Complex. Both techniques indicate oxidation of the Fe ions during the sequence: phlogopite → mixed-layer → vermiculite. Further, the Mössbauer spectra indicate that Fe oxidation occurs mainly in the octahedral sites and suggest that migration and oxidation of the Fe2+ ions from the octahedral sites to the tetrahedral sites may occur during the transformation of phlogopite into a mixed-layer phase. Finally, the vermiculitization process involves both Fe oxidation and loss of K with a concomitant increase in the Mg content.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annersten, H. (1974) Mössbauer studies of natural biotites. Am. Miner. 59, 143151.Google Scholar
Annersten, H., Devanarayanan, S., Häggström, L. & Wäppling, R. (1971) Mössbauer study of synthetic ferriphlogopite KMg3Fe3+Si3(OH)2 . Phys. Stat. Sol. (a). 48, K137 – K138.Google Scholar
Badreddine, R. (1998) Caractérisation cristallochimique des vermiculites de Palabora, République d’Afrique du Sud, et des Béni Bousera, Maroc. PhD thesis, Univ. Liège, Belgium.Google Scholar
Bancroft, G.M. & Brown, J.R. (1975) A Mössbauer study of coexisting hornblendes and biotites: Quantitative Fe3+/Fe2+ ratios. Am. Miner. 60, 265272.Google Scholar
Barshad, I. (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analyses, differential thermal curves, and water content. Am. Miner. 33, 655678.Google Scholar
Bouda, S. & Isaac, K.P. (1986) Influence of soil redox conditions on oxidation of biotite. Clay Miner. 21, 149157.CrossRefGoogle Scholar
Burnham, C.W. (1991) LCLSQ version 8.4, least-squares refinement of crystallographic lattice parameters. Dept. of Earth and Planetary Sciences, Harvard University.Google Scholar
Coey, J.M.D. (1984) Mössbauer spectroscopy of silicate minerals. Pp. 443510.in: Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 1 (Long, G.J., editor). Plenum Press, New York, USA.CrossRefGoogle Scholar
Decarreau, A. (1990) Matériaux Argileux: Structure, Propriétés et Applications. Societè Française Minéralogie et Cristallographie, Paris.Google Scholar
Farmer, V.C., Russell, J.D., McHardy, W.J., Newman, A.C.D., Ahlrichs, J.L. & Rimsaite, J.Y.H. (1971) Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites. Mineral. Mag. 38, 121137.CrossRefGoogle Scholar
Fourier, P.J. & De Jager, D.H. (1986) Phosphate in the Phalaborwa Complex. Pp. 22392253.in: Mineral Deposits of Southern Africa, Vols. I & II (Anhaeusser, C.R. & Maske, S., editors). Geological Society of South Africa, Johannesburg, South Africa.Google Scholar
Frick, C. (1975) The Phalaborwa syenite intrusions. Trans. Geol. Soc. S. Africa, 78, 201213.Google Scholar
Gevers, T.W. (1949) Vermiculite at Loolekop, Palabora, North East Transvaal. Trans. Proc. Geol. Soc. S. Africa, LI, 133178.Google Scholar
Goodman, B.A. & Wilson, M.J. (1973) A study of the weathering of a biotite using the Mössbauer effect. Mineral. Mag. 39, 448454.CrossRefGoogle Scholar
Graf, v. Reichenbach, H. & Beyme, B. (1988) Oxidation of structural ferrous iron in vermiculites: I. Oxidation by Fe3+ . Clay Miner. 23, 261270.CrossRefGoogle Scholar
Gruner, J.W. (1934) The structure of vermiculites and their collapse by dehydration. Am. Miner. 19, 557575.Google Scholar
Hanekom, H.J., Van Staden, C.M.V.H., Smit, P.J. & Pike, D.R. (1965) The geology of the Palabora igneous complex. Memoir 54, Dept. Mines, Geol. Surv. S. Africa.Google Scholar
Herber, R.H. (1984) Structure, bonding, and the Mössbauer lattice temperature. Pp. 199216.in: Chemical Mössbauer Spectroscopy (Herber, R.H., editor). Plenum Press, New York, USA.CrossRefGoogle Scholar
Hindman, J.R. (1992) Vermiculite. Vermiculite Technology Newsletter, 3(A), 12 p.Google Scholar
Justo, A. (1984) Estudio fisicoquimico y mineralogico de vermiculitas de Andalucia y Badajoz. PhD thesis, Univ. Sevilla, Spain.Google Scholar
Levillain, Ch. (1982) Influences des substitutions cationiques et anioniques majeures sur les spectres Mö ssbauer et infrarouge des micas potassiques trioctaédriques, applications cristallochimiques. PhD thesis, Univ. P. et M. Curie, Paris.Google Scholar
Long, G.J., Hautot, D., Grandjean, F., Morelli, D.T. & Meisner, G. P. (1999) A Mössbauer effect study of filled antimonide skutterudites. Phys. Rev. B, 60, 74107418.CrossRefGoogle Scholar
Rancourt, D.G., Dang, M.-Z. & Lalonde, A.E. (1992) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. Am. Miner. 77, 3443.Google Scholar
Regnard, J.R. (1986) L’effet Mössbauer. Pp. 2372.in: Méthodes spectroscopiques appliquées aux minéraux, Vol. 1 (Calas, G., editor). Societè Française Minéralogie et Cristallographie, Paris.Google Scholar
Robert, M. & Pedro, G. (1966) Transformation d’une phlogopite en vermiculite par extraction du potassium. Bull. Gr. fr. Argiles, 12, 317.CrossRefGoogle Scholar
Roy, R. & Romo, L.A. (1957) Weathering studies. 1. New data on vermiculite. J. Geol. 65, 603610.CrossRefGoogle Scholar
Sanz, J. & Stone, W.E.E. (1977) NMR study of micas. I. Distribution of Fe2+ ions on the octahedral sites. J. Chem. Phys. 67, 37393743.CrossRefGoogle Scholar
Sanz, J., Meyers, J., Vielvoye, L. & Stone, W.E.E. (1978) The location and content of iron in natural biotites and phlogopites: A comparison of several methods. Clay Miner. 13, 4552.CrossRefGoogle Scholar
Strand, P.R. & Stewart, O.F. (1983) Vermiculite. Pp. 13751381.in: Industrial Minerals and Rocks (5th edition) (Lefond, S.J., editor). American Institute of Mining Engineers, New York, USA.Google Scholar
Taylor, G.L., Ruotsala, A.P. & Jr.Keeling, R.O. (1968) Analysis of iron in layer silicates by Mössbauer spectroscopy. Clays Clay Miner. 16, 381391.CrossRefGoogle Scholar
Ungethüm, H. (1965) Eine neue Methode zur Bestimmung von Eisen (II) in Gesteinen und Mineralen, insbesondere auch in bitumenhaltigen Proben. Z. angew. Geol. 11, 500505.Google Scholar
Wilson, M.J. (1970) A study of weathering in a soil derived from a biotite hornblende rock. I. Weathering of biotite. Clay Miner. 8, 291303.CrossRefGoogle Scholar