Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T10:14:47.868Z Has data issue: false hasContentIssue false

Acrylonitrile-smectite complexes

Published online by Cambridge University Press:  09 July 2018

F. Bergaya
Affiliation:
CRSOCI-CNRS, IB, Rue de la Férollerie, 45071 Orleans Cedex 02, France
F. Kooli
Affiliation:
CRSOCI-CNRS, IB, Rue de la Férollerie, 45071 Orleans Cedex 02, France

Abstract

The adsorption of acrylonitrile (AN) monomer vapour in the interlamellar space of smectites exchanged with different cations (Na or Y or hexylammonium) was monitored and used to yield macromolecular layers. Polymerization in the presence or absence of a free-radical initiator was obtained by heating at 100°C for 72 h. Cyclization can already be obtained at this stage, and is completed by heating the polyacrylonitrile (PAN)-complexes at 220°C for 48 h.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annabi-Bergaya, F., Cruz, M.I., Gatineau, L. & Fripiat, J.J. (1981) Adsorption of alcohols by smectites: IV. Models. Clay Min., 16, 115–122.Google Scholar
Bellamy, L.J. (1966) The Infrared Spectra of Complex-Molecules, pp. 263276. Methuen, London.Google Scholar
Blumstein, A. (1961) Etude de polymerisation en couche adsorbee I. Bull. Soc. Chim. Fr., 899905.Google Scholar
Blumstein, A. (1965) Polymerisation of adsorbed monolayers. I. Preparation of the clay-polymer complex. J. Polymer. Sci. A3, 26532664.Google Scholar
Blumstein, R., Blumstein, A. & Parikh, K.K. (1974) Polymerization of monomolecular layers adsorbed on montmorillonite: Cyclization in polyacrylonitrile and polymethacrylonitrile. Appl. Polym. Sym., 25, 81–88.Google Scholar
Gibson, H.W. (1984) Control of electrical properties of polymers by chemical modification. Polymer Rev., 25, 127. Google Scholar
Halverson, F., Stamm, R.F. & Whalen, J. (1948) The vibrational spectrum and thermodynamic functions of acrylonitrile. J. Chem. Phys., 16, 806–816.Google Scholar
Nakamoto, K. (1978) Infrared Spectra of Inorganic and Coordination-Compounds, p. 186. 2nd ed. Wiley, New York.Google Scholar
Serratosa, J.M. (1968) Infrared study of benzonitrile (C6H5-CN)-montmorillonite complexes. Am. Miner., 53, 1244–1251.Google Scholar
Sugahara, Y., Kuroda, K. & Kato, C. (1984) Synthesis of /3-sialon from a montmorillonite-polyacrylonitrile intercalation compound by carbothermal reduction. J. Am. Ceram. Soc., 67, C247C248.CrossRefGoogle Scholar
Sugahara, Y., Satakawa, S., Kuroda, K. & Kato, C. (1989) Evidence for the formation of interlayer polyacrylonitrile in kaolinite. Clays Clay Miner., 36, 343–348.Google Scholar
Theng, B.K.G. (1974) The Chemistry of Clay-Organic Reactions. Adam Hilger, London.Google Scholar
Yamanaka, S., Kanamaru, F. & Koizumi, M. (1974) Role of interlayer cations in the formation of acrylonitrile- montmorillonite complexes. J. Phys. Chem., 78, 42–44.CrossRefGoogle Scholar
Yamanaka, S., Kanamaru, F. & Koizumi, M. (1975) Studies on the orientation of acrylonitrile adsorbed on interlamellar surfaces of montmorillonite. J. Phys. Chem., 79, 1285–1287.Google Scholar