Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T00:43:24.575Z Has data issue: false hasContentIssue false

Acid activation of a Spanish sepiolite: II. Consideration of kinetics and physico-chemical modifications generated

Published online by Cambridge University Press:  09 July 2018

M.A. Vicente Rodriguez
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Senda del Rey s/n, 28040 Madrid Departamento de Química Inorgánica, Facultad de Química, Universidad de Salamanca, Plaza de los Caídos s/n, 37008 Salamanca
J.D. Lopez Gonzalez
Affiliation:
Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Senda del Rey s/n, 28040 Madrid
M.A. Bañares Muñoz
Affiliation:
Departamento de Química Inorgánica, Facultad de Química, Universidad de Salamanca, Plaza de los Caídos s/n, 37008 Salamanca
J. Casado Linarejos
Affiliation:
Departamento de Química Física, Facultad de Química, Universidad de Salamanca, Plaza de los Caídos s/n, 37008 Salamanca, Spain

Abstract

Sepiolite from Vallecas (Spain) was treated with HCl solutions (1.25; 2.5; 5.0; 10.0 and 20.0 wt%) at 25°C for 2, 6, 24 and 48 h. The solutions obtained after washing the acid treated samples were analysed and a kinetic model was applied to the cation dissolution data. The development of porosity and number of acid centres was studied. The experimental conditions which yield products with the highest surface activity were established. The size of the silica fibres, obtained after the treatment, decreases when the intensity of the treatments is increased. These characteristics are important for the adsorptive properties and the catalytic potential of a solid.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul-Latif, N. & Weaver, C.E. (1969) Kinetics of acid-dissolution of palygorskite (attapulgite) and sepiolite. Clays Clay Miner. 17, 169178.CrossRefGoogle Scholar
Bonilla, J.L., Lopez Gonzalez, J. De D., Ramirez Saenz, A., Rodriguez Reinoso, F. & Valenzuela Calahorro, C. (1981) Activation of a sepiolite with dilute solutions of NO3H and subsequent heat treatments: II. Determination of surface acid centres. Clay Miner. 16, 173179.CrossRefGoogle Scholar
Brauner, K. & Preisinger, A. (1956) Struktur und Entstehungdes Sepioliths. Tschhertnarks Min. Petr. Mitt. 6, 120140.CrossRefGoogle Scholar
Campelo, J.M., Garcia, A., Luna, D. & Marinas, J.M. (1987) Catalytic activity of natural sepiolites in cyclohexene skeletal isomerization. Clay Miner. 22, 233236.CrossRefGoogle Scholar
Cetisli, H. and Gedikbey, T. (1990) Dissolution kinetics of sepiolite from Eskisehir (Turkey) in hydrochloric and nitric acids. Clay Miner. 25, 207–215.CrossRefGoogle Scholar
Connors, K.A. (1990) Chemical Kinetics: the Study of Reaction Rates in Solution. VHC Publ. New York.Google Scholar
Corma, A., Mifsud, A. & Perez, J. (1986) Etude cin6tique de l'attaque acide de la s6piolite: Modifications des propri6t6s texturales. Clay Miner. 21, 69–84.CrossRefGoogle Scholar
Cornejo, J., & HERMOSLN M, C, (1986) Efecto de la temperatura en la acidez superficial del producto obtenido por tratamiento ∼icido de sepiolita. Bol. Soc. Esp. Miner. 9, 135138.Google Scholar
Cranston, R.W. & Inkley, F.A. (1957) The determination of pore structures from nitrogen adsorption isotherms. Adv. Catal. 9, 143154.CrossRefGoogle Scholar
Gonzalez, L., Ibarra, L.M., Rodriguez, A., Moya, J.S. & VALL∼ F.J. (1984) Fibrous silica gel obtained from sepiolite by HC1 attack. Clay Miner. 19, 9398.CrossRefGoogle Scholar
Gregg, S.J. (1975) A simple method for comparing the shapes of closely related adsorption isotherms. J.C.S. Chem. Comm. 699-700.Google Scholar
Jimenez Lopez, A., Lopez Gonzalez, J. De D., Ramirez Saenz, A., Rodriguez Reinoso, F., Valenzuela Calahorro, C. & Zurita Herrera, L. (1978) Evolution of surface area in a sepiolite as a function of acid and heat treatments. Clay Miner. 13, 375385.CrossRefGoogle Scholar
Jones, B.F. & Galan, E. (1988) Sepiolite and palygorskite. Pp. 631-674 in: Hydrous Phyllosilicates. Reviews in Mineralogy, 19 (Bailey, S.W., editor). Mineralogical Society of America, Washington.Google Scholar
Lippens, B.C. & De Boer, J.H. (1965) Studies on pore systems in catalysts. V. The t method. J. Catal. 4, 319323.CrossRefGoogle Scholar
Lopez Gonzalez, J. De D., Ramirez Saenz, A., Rodriguez Reinoso, F., Valenzuela Calahorro, C. & Zurita Herrera, L. (1981) Activación de una sepiolita con disoluciones diluidas de NO3H y posteriores tratamientos térmicos: I. Estudio de la superficie específica. Clay Miner. 16, 103113.CrossRefGoogle Scholar
Osthaus, B.B. (1954) Chemical determination of tetrahedral ions in nontronite and montmorillonite. Clays Clay Miner. 2, 404417.CrossRefGoogle Scholar
Rives, V. (1991) A computer program for analyzing nitrogen adsorption isotherms on porous solids. Adsorption Sci. Technology 8, 95104.CrossRefGoogle Scholar
Rodriguez Reinoso, F., Ramirez Saenz, A., Lopez Gonzalez, J. De D., Valenzuela Calahorro, C. & Zurrra Herrera, L. (1981) Activation of a sepiolite with dilute solutions of NO3H and subsequent heat treatments: III.Development of porosity. Clay Miner. 16, 315323.CrossRefGoogle Scholar
Ross, C.S. & Hendricks, S.B. (1945) Minerals of the montmorillonite group; their origin and relation to soils and clays. Prof. Pap. U. S. Geol. Surv. 205-B, 23-79.Google Scholar
Sing, K.S.W. (1970) Utilization of adsorption data in the BET region. In: Surface Area Determination. Butterworths, London.Google Scholar
Suarez, M., Flores, L.V. & Martin Pozas, J.M. (1992) Textural study of palygorskite by acid treatment. Abstracts Mediterranean Clay Meeting M.C.M. ‘92; Lipari (Italy), 132-133.Google Scholar
Sugiura, M., Hayashi, H. & Suzuki, T. (1991) Adsorption of ammonia by sepiolite in ambient air. Clay Sci. 8, 87100.Google Scholar
Vicente Rodriguez, M.A., Lopez Gonzalez, J. De D. & Banares Munoz, M.A. (1994) Acid activation of a Spanish sepiolite. Physico-chemical characterization, free silica content and surface area of the solids obtained. Clay Miner. 29, 361367.CrossRefGoogle Scholar