Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T06:44:00.323Z Has data issue: false hasContentIssue false

Abundance of halloysite neoformation in soils developed from crystalline rocks. Contribution of transmission electron microscopy

Published online by Cambridge University Press:  09 July 2018

R. Romero
Affiliation:
Departamento de Edafologia e Quimica Agricola, Universidad de Santiago de Compostela, Espana
M. Robert
Affiliation:
Station de Science du Sol, INRA, 78026 Versailles, France
F. Elsass
Affiliation:
Station de Science du Sol, INRA, 78026 Versailles, France
C. Garcia
Affiliation:
Departamento de Edafologia e Quimica Agricola, Universidad de Santiago de Compostela, Espana

Abstract

The soils developed from crystalline and metamorphic rocks in Galicia (NW Spain), are characterized by high concentrations of 1 : 1 phyllosilicates and gels. Thermal analyses, X-ray diffraction after formamide treatment, and IR spectroscopy in the OH vibration range have been performed on the clay fractions, but do not discriminate clearly between the different associated mineralogical phases. HRTEM studies linked with microdiffraction and microanalyses have led to the identification of several types of gel which transform into goethite, gibbsite, clay precursors, and/ or halloysite according to their composition (Fe, Al or Si-Al). Halloysite-like minerals are the main constituents and they have a great variety of morphologies: lamellar, spheroidal, tubular, platy or poikilitic. In general, halloysite and gel formation on crystalline rocks is related to the bioclimatic conditions, involving high hydrolysis in the presence of organic matter. This halloysite seems to be a metastable mineral which would evolve into kaolinite with increasing weathering time.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, T.F. (1962) Halloysite and gibbsite formations in Hawaii. Clays Clay Miner., 9, 315–328.Google Scholar
Berthier, P. (1826) Analyse de Thalloysite. Ann. Chim. Phys., 32, 332–335.Google Scholar
Chukhrov, F.V. & Zvyagin, B.B. (1966) Halloysite, a crystallochemically and mineralogically distinct species. Proc. Int. Clay Conf. Jerusalem y, 1125.Google Scholar
Churchman, G.J., Whitton, J., Claridge, G.G. & Theng, B.K. (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clays Clay Miner., 32, 241–248.CrossRefGoogle Scholar
Delvigne, J. & Boulange, B. (1973) Micromorphologie des hydroxides d'aluminium dans les niveaux d'alteration et dans les bauxites. Pp. 665681 in: Soil Microscopy(Rutherford, editor). Publ. Limestone Press, Kingston, Ontario.Google Scholar
Dixon, J.B. (1977) Kaolinite and serpentinite group minerals. Pp. 357403 in: Minerals in Soil Environments(Dixon, J.B & Weed, S.B., editors). Soil Sci. Soc. Am., Madison, Wisconsin.Google Scholar
Garcia-Rodeja, E., Silva, M.B. & Macias, F. (1987) Andosols developed from non-volcanic materials in Galicia, NW Spain. J. Soil Sci., 38, 573–591.CrossRefGoogle Scholar
Henmi, T. & Huang, P.M. (1987) Effect of phosphate anion on the formation of imogolite. Proc. Int. Clay Conf. Denver,, 231236.Google Scholar
Keller, W.D. (1982) Kaolin—A most diverse rock in genesis texture, physical properties and uses. Geoi Soc. Am. Bull., 93, 27–36.Google Scholar
Kirkman, J.H. (1981) Morphology and structure of halloysite in New Zealand Tephras. Clays Clay Miner., 29, 19. CrossRefGoogle Scholar
Kunze, G.W. & Bradley, W.F. (1964) Occurrence of tabular halloysite in Texas Soils. Proc. 12th Nat. Cong. Atlanta, Georgia(Bradley, , editor). Pergamon Press, NY, 523527.Google Scholar
Nagasawa, K. (1978a) Weathering of volcanic ash and other pyroclastic materials. Pp. 105-125 in: Clays and Clay Minerals in Japan(Sudo, & Shimoda, , editors). Kondansha, Tokyo/Elsevier, Amsterdam.Google Scholar
Nagasawa, K. (1978b) Kaolin minerals. Pp. 189219 in: Clays and Clay Minerals of Japan(Sudo & Shimoda, editors). Kondansha, Tokyo/Elsevier, Amsterdam.Google Scholar
Miyasaki, S. (1976) Mineralogical properties of halloysites as related to its genesis. Proc. Int. Clay Conf.y Mexico City,, 257265.Google Scholar
Nagasawa, K. & Noro, H. (1987) Mineralogical properties of halloysites of weathering origin. Chem. Geol., 60, 145–149.CrossRefGoogle Scholar
Noro, H. (1986) Hexagonal platy halloysite in an altered tuff bed, Komaki City, Aichi Prefecture, Central Japan. Clay Miner, 21, 401–415.Google Scholar
Parham, W.E. (1969) Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering. Clays Clay Miner., 17, 13–22.Google Scholar
Pedro, G. (1966) Essai sur la caracterisation geochimique des differents processus zonaux resultant de Talt^ration superficielle. C.R. Acad. Sci. Paris,, 262D, 18281831.Google Scholar
Quantin, P. (1990) Specificity of the halloysite rich tropical or subtropical soils. Trans. 14th Int. Congr. Soil Sci., Kyoto,, 1621.Google Scholar
Quantin, P., Gautheyrou, J. & Lorenzoni, P. (1988) Halloysite formation through in situ weathering of volcanic glass from trachytic pumices, Vico's Volcano, Italy. Clay Miner., 23, 423437.CrossRefGoogle Scholar
Quantin, P., Herbillon, A.J., Janot, C. & Siefferman, G. (1984) L“halloysite” blanche riche en fer de Vate (Vanuatu)—hypothese d'un Edifice interstratifie halloysite-hisingerite. Clay Miner., 19, 629–644.Google Scholar
Robertson, I.D.M. & Eggleton, R.A. (1991) Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derived kaolinite to halloysite. Clays Clay Miner., 39, 113–126.Google Scholar
Romero, R., Robert, M., Elsass, F. & Garcia, C. (1992) Evidence by transmission electron microscopy of weathering microsystems in soils developed from crystalline rocks. Clay Miner., 27, 21–33.Google Scholar
Souza Santos, P. de, Souza Santos, H. de & Brindley, G.W. (1966) Mineralogical studies of kaolinite-halloysite clays: Part IV. A platy mineral with structural swelling and shrinking characteristics. Am. Miner., 51, 1640–1648.Google Scholar
Sudo, T. & Yotsumoto, M. (1977) The formation of halloysite tubes from spheritic halloysite. Clays clay Miner. 25, 155159 CrossRefGoogle Scholar
Tazaki, K. (1982) Analytical electron microscopic studies of halloysite formation processes—morphology and composition of halloysite. Proc. Int. Clay Conf. Bologna, Pavia,, 573-584.Google Scholar
Tazaki, K. & Fyfe, W.S. (1987) Primitive clay precursors formed on feldspar. Can. J. Earth Sci., 24, 506–527.Google Scholar
Van Oort, F., Jongmans, T.G., Jaunet, A.M., van Doesburg, J. & Feijtel, T. (1990) Andesite weathering and halloysite neoformation in a ferrallitic soil environment in Guadeloupe. In situstudy of different halloysite facies on thin sections by SEM-EDXRA, microdrilling, step scan XRD and TEM. C.R. Acad. Sci. Paris,, 310, serie II, 425431.Google Scholar
Wada, S.I. & Mizota Ch. (1982) Iron-rich halloysite (10 A) with crumpled lamellar morphology from Hokkaido Japan. Clays Clay Miner., 30, 315–317.CrossRefGoogle Scholar
Wilson, M.J. & Tait, J.M. (1977) Halloysite in some soils from north-east Scotland. Clay Miner., 12, 59–66.Google Scholar