Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T01:34:52.341Z Has data issue: false hasContentIssue false

XRD peak migration and apparent shift of cell-edge lengths of nano-sized hematite, goethite and lepidocrocite

Published online by Cambridge University Press:  09 July 2018

H. Stanjek*
Affiliation:
Lehrstuhl für Bodenkunde, TU München, 85350 Freising, Germany
*

Abstract

X-ray powder diffraction patterns were simulated for nano-sized hematite, goethite and lepidocrocite by three-dimensional integration in reciprocal space. The cell-edge lengths were refined together with the size parameters X and Xe of the Thompson-Cox-Hastings function, which for orthorhombic structures was extended by a biaxial broadening parameter Xo. Variations of the structure factors across broad peaks resulted in apparent peak shifts and concomitant shifts in celledge lengths, which were significantly correlated with the size parameters for hematite and partially correlated for goethite and lepidocrocite. Regression equations are given for correcting cell-edge lengths obtained from Rietveld fits for size-induced shifts.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W., Brindley, G.W., Kodama, H. & Martin, R.T. (1982) Report of the Clay Minerals Society Nomenclature Comittee for 1980 ­ 1981 : Nomenclature for regular interstratifications. Clays and Clay Minerals, 30, 7678.CrossRefGoogle Scholar
Blake, R.L., Hessevick, R.E., Zoltai, T. & Finger, L.W. (1966) Refinement of the hematite structure. American Mineralogist, 51, 123129.Google Scholar
Christensen, A.N., Lehmann, M.S. & Convert, P. (1982) Hydrogen bonds of γ-FeOOH. Acta Chemica Scandinavia, A36, 303308.Google Scholar
Cornell, R.M. & Schwertmann, U. (1996) The Iron Oxides, pp. 411415. Verlag Chemie, Weinheim, Germany.Google Scholar
Eberl, D. & Blum, A. (1993) Illite crystallite thickness by X-ray diffraction. Pp. 123153 in: Computer Application to X-ray powder Diffraction Analysis of Clay Minerals (Reynolds, R.C. & Walker, J.R., editors), Clay Minerals Society, Bolder Colorado, USA.Google Scholar
Eggleton, R.A. (1988) The application of micro-beam methods to iron minerals in soils. Pp. 165202 in: Iron in Soils and Clay Minerals (Stucki, J.W., Goodman, B.A. & Schwertmann, U., editors). Reidel, Dordrecht, The Netherlands.Google Scholar
Elless, M.P. & Rabenhorst, M.C. (1994) Hematite in the shales of the triassic Culpeper basin of Maryland. Soil Science, 158, 150154.Google Scholar
Fawcett, T.G. et al. (1988) Establishing an instrumental peak profile calibration standard for powder diffraction analyses: international round robin conducted by the JCPDS-ICDD and the U.S. National Bureau of Standards. Powder Diffraction, 3, 209218.CrossRefGoogle Scholar
Grebille, D. & Berar, J.-F. (1986) Calculation of diffraction line profiles in the case of coupled stacking faul t and size- ef fect broadening: Application to boehmite AlOOH. Journal of Applied Crystallography, 19, 249254.CrossRefGoogle Scholar
Gruner, J.W. (1934) The structure of vermiculites and thei r collapse by dehydr ation. Americ an Mineralogist, 19, 557578.Google Scholar
Gualtieri, A. (1996) Modal analysis of pyroclastic rocks by combined Rietveld and RIR methods. Powder Diffraction, 11, 97106.CrossRefGoogle Scholar
Guinier, A. (1963) X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies,pp. 219237. Freeman & Company, San Francisco.Google Scholar
Hahn, T. (1996) Space-group Symmetry. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Izumi, F. (1993) Rietveld analysis programs RIETAN and PREMOS and Special Applications. Pp. 236253 in: The Rietveld Method (Young, R.A., editor). Oxford University Press, Oxford, UK.Google Scholar
Jackman, J.M., Jones, R.C., Yost, R.S. & Babcock, C.J. (1997) Rietveld estimates of mineral percentages to predict phosphate sorption by selected Hawaiian soils. Soil Science Society of America Journal, 61, 618625.Google Scholar
Langford, J.I., Boultif, A., Auffrédic, J.P. & Louer, D. (1993) The use of pattern decomposition to study the combined X-ray diffraction effects of crystallite and stacking faults in ex-oxalate zinc oxide. Journal of Applied Crystallography, 26, 2233.Google Scholar
Larson, A.C. & Von Dreele, R.B. (1994) GSAS: General Structure Analysis System, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.Google Scholar
Malengreau, N., Weidler, P.G. & Gehring, A.U. (1997) Iron oxides in laterites: a combined mineralogical, magnetic, and diffuse reflectance study. Schweizer is che Mineralogis cheund Petrographische Mitteilungen, 77, 1320.Google Scholar
Mering, J. (1949) L’interférence de rayons X dans les systems a str ati fica tion dé sordenne` e. Acta Crystallographica, 2, 371377.Google Scholar
Perdikatsis, V. (1992) Quantitative mineralogical analysis of bauxites by X-ray diffraction with the Rietveld method. Acta Geologica Hungarica, 35, 447457.Google Scholar
Jr.Reynolds, R.C., (1968) The effect of particle size on apparent lattice spacings. Acta Crystallographica, 24, 319320.Google Scholar
Jr.Reynolds, R.C., (1989a) Diffraction by small and disordered crystals. Pp. 145181 in: Modern Powder Diffraction (Bish, D.L. & Post, J.E., editors). Reviews in Mineralogy 20, Mineralogical Society of America, Washington, D.C.Google Scholar
Jr.Reynolds, R.C., (1989b) Principles of powder diffraction. Pp. 117 in: Modern Powder Diffraction (Bish, D.L. & Post, J.E., editors). Reviews in Mineralogy 20, Mineralogical Society of America, Washington, D.C.Google Scholar
Jr.Reynolds, R.C., (1993) Three-dimensional X-ray powde r diffraction from di sorde red ill ite: Simulation and interpretation of the diffraction patterns. Pp. 4478 in: Computer Applications to X-ray powder Diffraction Analysis of Clay Minerals (Jr.Reynolds, R.C. & Walker, J.R., editors). The Clay Minerals Society, Boulder Colorado.Google Scholar
Schulze, D.G. (1982) The identification of iron oxides by differential X-ray diffraction and the influence of aluminum substitution on the structure of goethite. PhD thesis, TU München, Germany.Google Scholar
Schulze, D.G. & Schwertmann, U. (1984) The influence of aluminium on iron oxides. X. The properties of Al-substi tuted goethit es. Clay Mineral s, 19, 521539.Google Scholar
Schwertmann, U., Friedl, J., Stanjek, H., Murad, E. & Bender Koch, C. (1998) Iron oxides in sediments from the Atlantis II Deep, Red Sea. European Journal of Mineralogy, 10, 953967.Google Scholar
Stanjek, H. (1991) Aluminium- und Hydroxylsubstitution in synthetischen und natürlichen Hämatiten. Verlag Maria Leidorf, Bucham Erlbach, Germany.Google Scholar
Stanjek, H. & Häusler, W. (2000) Quantifizierung sil ikat ische r Tonminerale im Textur- und Pulverpräparat mit MACCLAYFIT. Berichte der Deutschen Ton- und Tonmineralgruppe e.V., 7, 256265.Google Scholar
Stanjek, H. & Schneider, J. (2000) Anisotropic peak broadening analysis of a biogenic soil greigite (Fe3S4) with Rietveld analysis and single peak fitting. American Mineralogist, 85, 839846.Google Scholar
Stanjek, H. & Schwertmann, U. (1992) The influence of aluminum on iron oxides. Part XVI: Hydroxyl and aluminum substitution in synthetic hematites. Clays and Clay Minerals, 40, 347354.Google Scholar
Szytula, A., Burewicz, A., Dimitrijevic, Z., Krasnicki, S., Rzany, H., Todorovic, J., Wanic, A. & Wolski, W. (1968) Neutron diffraction studies of γ-FeOOH. Physica Status Solidi, 26, 429434.Google Scholar
Thompson, P., Cox, D.E. & Hastings, J.B. (1987) Rietveld refinement of Debye-Scherrer synchroton X-ray data from Al2O3 . Journal of Applied Crystallography, 20, 7983.CrossRefGoogle Scholar
Weidler, P.G., Luster, J., Schneider, J., Sticher, H. & Gehring, A.U. (1998) The Rietveld method applied to the quantitative mineralogical and chemical characterization of a ferralitic soil. European Journal of Soil Science, 49, 95105.Google Scholar
Young, R.A. (1993) Introduction to the Rietveld method. In: The Rietveld method (R.A. Young, editor). IUCr Book Series, Oxford University Press, Oxford, UK.Google Scholar