Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T17:29:43.671Z Has data issue: false hasContentIssue false

X-ray photoelectron studies of titanium in biotite and phlogopite

Published online by Cambridge University Press:  09 July 2018

S. Evans
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, Dyfed SY23 1NE, U.K.
E. Raftery
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, Dyfed SY23 1NE, U.K.

Abstract

X-ray photoelectron diffraction data from single crystals of a biotite containing ∼1% Ti show that although this element is located entirely in octahedral sites, the Ti sites are not precisely equivalent to those of Mg and Fe. Comparisons of Ti 2p X-ray photoelectron spectra from two biotites and from two titaniferous phlogopites (∼0·3–·5% Ti) with those from Ti(II), Ti(III) and Ti(IV) oxides indicate that this element is present as Ti(III) rather than Ti(IV) in all four micas.

Résumé

Résumé

Les données obtenues en analysant des photo-électrons émis par des rayons X dans des échantillons monocristallins d'une biotite contenant ∼1% de Ti montrent que, bien que cet élément se situe entièrement dans des sites octaédriques, les sites titanifères ne sont pas exactement équivalents aux sites magnésifères et ferriefères. La comparaison des spectres photoélectroniques aux rayons X du Ti 2p de deux biotites et de deux phlogopites titanifères (∼0·3–0·5% de Ti) avec ceux des oxides de Ti(II), Ti(III) et Ti(IV) indique que cet élément est présent sous forme de Ti(III) plutot que de Ti(IV) dans les quatre micas.

Kurzreferat

Kurzreferat

Mit Hilfe von röntgen-photoelektron Diffraktometrie wurden Biotiteinzelkristalle mit einem Ti-Gehalt von ∼1% untersucht. Die Ergebnisse zeigen, daß obwohl das Titan ausschließlich oktaedrisch koordiniert ist, diese Positionen nicht exakt mit denen von Mg und Fe übereinstimmen. Ein Vergleich der Ti—röntgen-photoelektron Spektren von 2 Biotiten und 2 titanhaltigen Phlogopiten (0·3–0·5% Ti) mit den Spektren von Ti (II)-, Ti(III)- und Ti(IV)-Oxiden zeigt daß dieses Element bevorzugt in der 3-wertigen Stufe gegenüber der 4-wertigen in allen vier Glimmern auftritt.

Resumen

Resumen

Los datos obtenidos de la difracción de fotoelectrones eyectados por rayos X de monocristales de una biotita que contiene ∼1% Ti muestran que aunque est elemento está situado enteramente en sitios octaédricos, los sitios ocupados por Ti no son equivalentes exactamente a los de Mg y Fe. Las comparaciones de los espectros de fotoelectrones de Ti 2p de dos biotitas y de dos flogopitas titaníferas (∼0·3–0·5% Ti) con los de óxidos Ti(II), Ti(III) y Ti(IV) indican que este elemento está, presente como Ti(III) más bien que como Ti(IV) en las cuatro micas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, S.L.T. (1979) ESCA inyestigation of V2O5 + TÌO2 catalysts for the vapour phase oxidation of alkylpyridines. J. Chem. Soc. Faraday Trans. I 75, 13561370.Google Scholar
Brundle, C.R. (1974) Discussion remarks in: Faraday Disc. Chem. Soc. 58, 90 & 131.Google Scholar
Burns, R.G. (1970) Mineralogical Applications of Crystal Field Theory. Pp. 53, 59, 124. Cambridge University Press.Google Scholar
Dahl, O (1970) Octahedral titanium and aluminium in biotite. Lithos 3, 161166.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. & Zussman, J (1962) Rock-forming Minerals, Vol. 3. Sheet Silicates Pp. 44 & 61. Longman, London.Google Scholar
Engel, A.E.J. & Engel, C.G. (1960) Progressive metamorphism and granitization of the major paragneiss, northwest Adirondack Mountains, New York. Geol. Soc. Amer. Bull. 71, 157.Google Scholar
EVan s, S (1977) Energy calibration in photoelectron spectroscopy. Pp. 121-151 in: Handbook of X-ray and UV Photoelectron Spectroscopy (D. Briggs, editor). HeyDen & Son, London.Google Scholar
EVan s, S, Adams, J.M. & Thomas, J.M. (1979) The surface structure and composition of layered silicate minerals: novel insights from X-ray photoelectron diffraction, K-emission spectroscopy and cognate techniques. Phil. Trans. Roy. Soc. Lond. A 292, 563591.Google Scholar
EVan s, S & Orchard, A.F. (1972) Photoelectron spectroscopy. Pp. 53-54 in: Electronic Structure and Magnetism of Inorganic Compounds, Vol. 2 (P. Day, editor). Chemical Society, London.Google Scholar
EVan s, S, Pritchard, R.G. & Thomas, J.M. (1977) Escape Depths of X-ray (Mg Ka)-induced photoelectrons and relative photoionization cross-sections for the 3p subshell of the elements of the first long period. J . Phys. C. (Sol. St. Phys.) 10, 24832498.CrossRefGoogle Scholar
EVan s, S & Raftery, E (1980) Quantitative X-ray photoelectron diffraction studies of single-crystal silicates. Sol. St. Comm. 33, 12131215.Google Scholar
EVan s, S, Raftery, E & Thomas, J.M. (1979) Angular variations in core-level XPS peak intensity ratios from single-crystal solids. Surface Science 89, 6475.CrossRefGoogle Scholar
Frost, D.C., Ishitani, A & Mcdowell, C.A. (1972) X-ray photoelectron spectroscopy of copper compounds. MolPhys. 24, 861877.Google Scholar
Ikemoto, I, Ishii, K, Kuroda, H & Thomas, J.M. (1974) Satellite phenomena in the X-ray photoelectron spectra of some titanium compounds. Chem. Phys. Letters 28, 5559.Google Scholar
Kretz, R (1958) Chemical study of garnet, biotite and hornblenDe from gneisses of southwestern Quebec, with emphasis on distribution of elements in coexisting minerals. J. Geol. 67, 371402.Google Scholar
Prider, R.T. (1939) Some minerals from the leucite-rich rocks of the West Kimberley area, Western Australia. Miner. Mag. 25, 373387.Google Scholar
Ramqvist, L, Hamrin, K, Johansson, G, Fahlman, A & Nordling, C (1969) Charge-transfer in transition metal carbiDes and related compounds studied by ESCA. J. Phys. Chem. Solids 30, 18351847.Google Scholar
Rengasamy, P (1976) Substitution of iron and titanium in kaolinites. Clays Clay Miner. 24, 265266.Google Scholar
Robert, J-L. (1976) Titanium solubility in synthetic phlogopite solid solutions. Chem. Geol. 17, 213227.Google Scholar
Saxena, S.K. (1966) Distribution of elements between co-existing muscovite and biotite and crystal chemical role of titanium in the micas. Neues Jahrb. Mineral. Abhandl. 105, 117.Google Scholar
Schwarcz, H.P. (1967) The effect of crystal field stabilization on the distribution of transition metals between metamorphicminerals. Geochim. Cosmochim. Acta, 31, 503517.Google Scholar
Shannon, R.D. & Prewitt, C.T. (1969) Effective ionic radii in oxiDes and fluoriDes. Acta Cryst. B25, 925946.Google Scholar
Simon, D, Perrin, C & Bardolle, J (1976) Contribution à l'étuDe par spectrométrie d'électrons (ESCA) De certains composes du titane. Application à l'oxydation De ce metal à temperature élevée et sous basses pression d'oxygène. Compte Rend. C 283, 299302.Google Scholar
Wells, A.F. (1962) Structural Inorganic Chemistry (3rd. Ed.). P. 457. Clarendon Press, Oxford.Google Scholar