Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T09:10:47.812Z Has data issue: false hasContentIssue false

Vermiculite expansion through non-artificial processes in pyroclastic carbonatites from Catanda (Angola)

Published online by Cambridge University Press:  02 January 2018

J. Xu*
Affiliation:
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Geologia, Universitat de Barcelona, C/Martí i Franquès s/n, 08028 Barcelona, Spain
M. Campeny
Affiliation:
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Geologia, Universitat de Barcelona, C/Martí i Franquès s/n, 08028 Barcelona, Spain
E. Tauler
Affiliation:
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Geologia, Universitat de Barcelona, C/Martí i Franquès s/n, 08028 Barcelona, Spain
J.C. Melgarejo
Affiliation:
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Geologia, Universitat de Barcelona, C/Martí i Franquès s/n, 08028 Barcelona, Spain
A.O. Gonçalves
Affiliation:
Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Geologia, Universitat de Barcelona, C/Martí i Franquès s/n, 08028 Barcelona, Spain
*

Abstract

The pyroclastic carbonatitic rocks from the Catanda volcanic area (Angola) contain annite and phlogopite grains which have been affected to a significant extent by vermiculitization. A mineralogical study of these micas has revealed that the annite was altered to K-vermiculite while vermiculitization of phlogopite generated Ca-vermiculite. Intermediate alteration products such as intergrowths of phlogopite/Ca-vermiculite were also found, but interstratified crystals of phlogopite/ vermiculite, a common intermediate product during vermiculitization processes, are not reported in the Catanda rocks. The two types of vermiculitized micas show ‘accordion’ textures, related to the expansion of vermiculite. To the authors’ knowledge, the present study is the first report of expanded vermiculites described in natural rocks and not generated as a consequence of industrial processing.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azzone, R.G. & Ruberti, E. (2010) Evolução Composicional dos Filossilicatos no Perfil Intempérico do Complexo Ultramáfico Alcalino-carbonatítico de Catalão I (GO). Geologia USP, Série Científica, 10, 233.Google Scholar
Bailey, S.W. (1980) Structures of layer silicates. Pp. 1-123 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley & G. Brown, editors). Monograph 5, Mineralogical Society, London.Google Scholar
Barshad, I. (1948) Vermiculite and its relation to biotite as revealed by Base Exchange reactions, X-ray analyses, differential thermal curves and water content. American Mineralogist, 33, 655.Google Scholar
Brigatti, M.F., Frigieri, P., Ghezzo, C. & Poppi, L. (2000) Crystal chemistry of Al-rich biotites coexisting with muscovites in peraluminous granites Sample: B1. American Mineralogist, 85, 436148.CrossRefGoogle Scholar
Campeny, M., Mangas, J., Melgarejo, J.C., Bambi, A., Alfonso, P., Gernon, T. & Manuel, J. (2014) The Catanda extrusive carbonatites (Kwanza Sul, Angola): an example of explosive carbonatitic volcanism. Bulletin of Volcanology, 76, 818834.Google Scholar
Campeny, M., Kamenetsky, V.S., Melgarejo, J.C., Mangas, J., Manuel, J., Alfonso, P., Kamenetsky, M.B., Bambi, A. & Gonçalves, A.O. (2015) Carbonatitic lavas in Catanda (Kwanza Sul, Angola): Mineralogical and geochemical constraints on the parental melt. Lithos, 232, 111.Google Scholar
Chakhmouradian, A.R. (2006) High-field-strength ele-ments in carbonatitic rocks: Geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chemical Geology, 235, 138160.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1962) Rock-Forming Minerals, Vol. 3, Sheet Silicates. Longman, London, pp. 246255.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1966) An Introduction to the Rock-Forming Minerals. Longman, London, pp. 270—273.Google Scholar
Douglas, L.A. (1989) Vermiculites. Pp. 635-674 in: Minerals in Soils Environments (J.B. Dixon & S.B. Weed, editors). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Giorgetti, G., Memmi, I. & Nieto, F. (1997) Microstructures of intergrown phyllosilicate grains from Verrucano metasediments (northern Apennines, Italy). Contributions to Mineralogy and Petrology, 128, 127138.Google Scholar
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Formoso, M.L.L., Galán, E., Kogure, T. & Stanjek, H. (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l'etude des Argiles, nomenclature committee for 2006. Clay Minerals, 41, 863877.Google Scholar
Hillier, S., Marwa, E.M.M. & Rice, M. (2013) On the mechanism of exfoliation of “vermiculite”. Clay Minerals, 48, 563582.Google Scholar
Hindman, J.R. (2006) Vermiculite. Pp. 10151026 in: Industrial Minerals and Rocks: Commodities, Markets and Uses, 7th edition (J. Elzea Kogel, N.C. Trivedi, M J. Barker & S. Krukowski, editors). Society of Mining, Metallurgy and Exploration, Littleton, Colorado, USA.Google Scholar
Hülsemann, J. (1966) On the routine analysis of carbonates in unconsolidated sediments. Journal of Sedimentary Research, 36, 622625.Google Scholar
Huo, X., Wu, L., Liao, L., Xia, Z. & Wang, L. (2012) The effect of interlayer cations on the expansion of vermiculite. Powder Technology, 224, 241246.Google Scholar
MacEwan, D.M.C. & Wilson, M.J. (1980) Interlayer and intercalation complexes of clay minerals. Pp. 197-248 in: Crystal Structures of Clay Minerals and their X-ray Identification, (G.W Brindley & G. Brown, editors). Monograph 5, Mineralogical Society, London.Google Scholar
Marcos, C. & Rodríguez, I. (2010) Expansion behaviour of commercial vermiculites at 1000°C. Applied Clay Science, 48, 492498.CrossRefGoogle Scholar
Marcos, C., Arango, Y.C. & Rodríguez, I. (2009) X-ray diffraction studies of the thermal behaviour of commercial vermiculites. Applied Clay Science, 42, 368378.CrossRefGoogle Scholar
Moon, H.S., Song, Y. & Lee, S.Y. (1994) Supergene vermiculitization of phlogopite and biotite in ultra-mafic and mafic rocks, Central Korea. Clays and Clay Minerals, 42, 259268.CrossRefGoogle Scholar
Nelson, D.R., Chivas, A.R., Chappell, B.W. & McCulloch, M.T. (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica et Cosmochimica Acta, 52, 117.Google Scholar
Powder Diffraction File, version 2 (2000) Joint Committee of Powder Diffraction Standards. 12 Campus Blvd, Newtown Square, PA 19073, USA.Google Scholar
Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.Y., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. & Wones, D.R. (1998) Nomenclature of the micas. The Canadian Mineralogist, 36, 905912.Google Scholar
Rieder, M., Cavazzini, G., D'yakonov, Yu.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Mueller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. & Wones, D.R. (1999) Nomenclature of the micas. Mineralogical Magazine, 63, 267279.Google Scholar
Schingaro, E., Scordari, F. & Ventruti, G. (2001) Trioctahedral micas-1M from Mt. Vulture (Italy): Structural disorder and crystal chemistry Sample: LC2G Locality: Mt. Vulture, Italy. European Journal of Mineralogy, 13, 10571069.Google Scholar
Shirozu, H. & Bailey, S.W. (1966) Crystal structure of a two-layer Mg-vermiculite. American Mineralogist, 51, 11241143.Google Scholar
Silva, M.V.S. & Pereira, E. (1973) Estrutura Vulcânico-Carbonatitica da Catanda (Angola). Boletim dos Serviços de Geologia e Minas de Angola, 24, 514.Google Scholar
Thorez, J. (1975) Phyllosilicates and Clay Minerals: A Laboratory Handbook for their X-ray Diffraction Analysis (G. Lelotte, editor), pp. 2334. B 4820 Dison, Belgium.Google Scholar
Tischendorf, G., Förster, H.-J., Gottesmann, B. & Rieder, M. (2007) True and brittle micas: composition and solid-solution series. Mineralogical Magazine, 71, 285320.Google Scholar
Toksoy-Köksal, F., Tiirkmenoglu, A.G. & GöncüogluM.C. (2001) Vermiculitization of phlogopite in metagabbro, Central Turkey. Clay Minerals, 49, 8191.Google Scholar
TOPAS (2009) General Profile and Structure Analysis Software for Powder Diffraction Data, version 4.2, Bruker AXS Gmbh, Karlsruhe, Germany, 2009.Google Scholar
Walker, G.F. (1951) Vermiculites and some related mixed-layer minerals. Pp. 199—223 in: X-ray Identification and Crystal Structures of Clay Minerals (G.W. Brindley, editor). Mineralogical Society, London.Google Scholar
Woolley, A.R. & Church, A.A. (2005) Extrusive carbonatites: a brief review. Lithos, 85, 114.CrossRefGoogle Scholar
Wyllie, P.J., Jones, A.P. & Dent, J. (1996) Rare earth elements in carbonate-rich melts from mantle to crust. Pp. 77102 in: Rare Earth Minerals: Chemistry, Origin and ore Deposits (A.P. Jones, F. Wall & C.T. Williams, editors). Chapman & Hall, London.Google Scholar
X’Pert High Score Plus, version 2.2.2 (2006) PANalytical, B.V. Almelo, The Netherlands.Google Scholar