Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T20:32:35.506Z Has data issue: false hasContentIssue false

Variation of mineralogy during the beneficiation of Capim kaolin from Pará, Brazil

Published online by Cambridge University Press:  09 July 2018

W. N. Mussel
Affiliation:
Departamento de Química-ICEx, Universidade Federal de Minas Gerais, Campus–Pamulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
E. Murad*
Affiliation:
Departamento de Química-ICEx, Universidade Federal de Minas Gerais, Campus–Pamulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil Bayerisches Landesamt für Umwelt, Dienststelle Marktredwitz, D-95603 Marktredwitz, Germany
P. S. R. Criscuolo
Affiliation:
Centro de Desenvolvimento Mineral, Vale, 33030-970 Santa Luzia, Minas Gerais, Brazil
P. G. Pinheiro
Affiliation:
Departamento de Química-ICEx, Universidade Federal de Minas Gerais, Campus–Pamulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
J. D. Fabris
Affiliation:
Departamento de Química-ICEx, Universidade Federal de Minas Gerais, Campus–Pamulha, 31270-901 Belo Horizonte, Minas Gerais, Brazil
*

Abstract

Kaolin mined from the Ipixuna deposit of Pará Pigmentos S.A. in the Capim river area of northern Brazil has been studied at various stages of beneficiation to determine the behaviour of Fe- and Ti-bearing minerals which can reduce the brightness of the product. X-ray diffraction and Mössbauer spectroscopy showed the principal pigmenting minerals to be hematite and goethite, with chemical analyses showing a distinct decrease of both the total Fe and Ti contents in the course of processing. The Ti contents were primarily reduced due to the removal of anatase during particle size fractionation and dithionite reduction. While the Fe content of the final product is structurally bound in kaolinite, Raman spectroscopy indicates the remnant Ti to be bound both structurally in kaolinite and in remnant anatase.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrón, V. & Torrent, J. (1986) Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour. Journal of Soil Science, 37, 499510.Google Scholar
Carneiro, B.S., Angélica, R.S., Scheller, T., de Castro, E.A.S. & Neves, R.F. (2003) Caracterização mineralógica e geoquímiea e estudo das transformações de fase do caulim duro da região do Rio Capim, Pará. Cerâmica, 49, 237244.Google Scholar
Coey, J.M.D., Cugat, O., MacCauley, J. & Fabris, J.D. (1992) A portable soil magnetometer. Revista de Fisica Aplicada e Instrumentação, 7, 2530.Google Scholar
Goes, A.M., Rossetti, D.E. & Mendes, A.C. (2007) Heavy mineral as a tool to refine the stratigraphy of kaolin deposits in the Rio Capim area, northern Brazil. Anais da Academia Brasileira de Ciências, 79, 457471.Google Scholar
Gurmendi, A.C. (2007) The Mineral Industry of Brazil. USGS 2005 Minerals Yearbook, Volume 3 (Area Reports: International), U.S. Geological Survey, Reston, VA, USA, 23 pp.Google Scholar
Hinckley, D.N. (1963) Variability in ‘crystallinity’ values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229235.Google Scholar
Murad, E. (1997) Identification of minor amounts of anatase in kaolins by Raman spectroscopy. American Mineralogist, 82, 203206.Google Scholar
Murad, E. & Schwertmann, U. (1986) Influence of Al substitution and crystal size on the room-temperature Mössbauer spectrum of hematite. Clays and Clay Minerals, 43, 16.Google Scholar
Murad, E. & Wagner, U. (1991) Mössbauer spectra of kaolinite, halloysite and the firing products of kaolinite: new results and a reappraisal of published work. Neues Jahrbuch fur Mineralogie, Abhandlungen, 162, 281309.Google Scholar
Murray, H.H., Alves, C.A. & Bastos, C.H. (2007) Mining, processing and applications of the Capim Basin kaolin, Brazil. Clay Minerals, 42, 145151.Google Scholar
Santos, A.E.A. Jr., Rossetti, D.F. & Murray, H.H. (2007) Origin of the Rio Capim kaolins (northern Brazil) revealed by δ18O and δD analyses. Applied Clay Science, 37, 281294.Google Scholar
Schwertmann, U., Friedl, J., Pfab, G. & Gehring, A.U. (1995) Iron substitution in soil and synthetic anatase. Clays and Clay Minerals, 43, 599606.Google Scholar
Shoval, S., Panczer, G. & Boudeulle, M. (2007) Study of the occurrence of titanium in kaolinites by micro-Raman spectroscopy. Euroclay2007 Abstract Book. p. 12.Google Scholar
Souza, D.J.L., Varajao, A.F.D.C. & Yvon, J. (2006) Geochemical evolution of the Capim River kaolin, Northern Brazil. Journal of Geochemical Exploration, 88, 329331.Google Scholar
Souza, D.J.L., Varajão, A.F.D.C., Yvon, J. & da Costa, G.M. (2007a) Mineralogical, micromorphological and geochemical evolution of the kaolin facies deposit from the Capim region (northern Brazil). Clay Minerals, 42, 6987.Google Scholar
Souza, D.J.L., Varajão, A.F.D.C., Yvon, J., Scheller, T. & Moura, C.A.V. (2007b) Ages and possible provenance of the sediments of the Capim River kaolin, northern Brazil. Journal of South American Earth Sciences, 24, 2533.Google Scholar
Wilson, I.R., Santos, H.S. & Santos, P.S. (2006) Kaolin and halloysite deposits of Brazil. Clay Minerals, 41, 697716.Google Scholar