Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T10:06:37.043Z Has data issue: false hasContentIssue false

Synthesis and optical properties of composites based on ZnS nanoparticles embedded in layered magadiite

Published online by Cambridge University Press:  09 July 2018

Yufeng Chen*
Affiliation:
Department of Chemistry, Nanchang University, Jiangxi, 330031, P.R. China
Gensheng Yu
Affiliation:
Department of Chemistry, Nanchang University, Jiangxi, 330031, P.R. China
*

Abstract

Composites based on ZnS nanparticles embedded in layered magadiite were synthesized via a three step process : protonation of Na-magadiite, ion exchange in order to introduce Zn(NH3)42+ in the interlayer space, and addition of Na2S to form ZnS particles in the interlayer space of magadiite. The composites obtained were characterized by X-ray power diffraction (XRD), Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM-EDS), Transmission Electron Microscopy (TEM), Raman spectroscopy, Photoluminscence spectra (PL), and UV-visible transmission spectra (UV-vis). Results indicated that ZnS nanoparticles embedded in magadiite presented different optical properties and photoluminescence enhancement properties compared with those of uncovered ZnS particles (without host magadiite).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, S.A., Maheshwari, N., Tatikondewar, L., Kshirsagar, A. & Kulkarni, S.K. (2013) Ethylenediamine-mediated wurtzite phase formation in ZnS. Crystal Growth and Design, 13, 1369–1376.CrossRefGoogle Scholar
Aline, O.M. & Alexandre, G.S.P. (2009) Effect of thermal dehydration and rehydration on Na-magadiite structure. Journal of Colloid and Interface Science, 330, 392–398.Google Scholar
Bases, C.F. & Mesmer, R.E. Jr. (1976) The Hydrolysis of Cations. John Wiley & Sons, Inc., USA, 300–301.Google Scholar
Bénard, P., Auffrédic, J.P. & Louër, D. (1994) A study of the thermal decomposition of ammine zinc hydroxide nitrates. Thermochimica Acta, 232, 65–76.CrossRefGoogle Scholar
Brandt, A., Schwieger, W. & Bergk, K.H. (1988) Development of a model structure for the sheet silicate hydrates ilerite, magadiite and kenyaite. Crystal Research and Technology, 23, 1201–1203.CrossRefGoogle Scholar
Chai, L.L., Du, J. & Xiong, S.L. (2007) Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique. Journal of Physics Chemistry C, 111, 12658–12662.CrossRefGoogle Scholar
Chatterjee, A., Priyam, A., Bhattacharya, S.C. & Saha, A. (2007) Differential growth and photoluminescence of ZnS nanocrystals with variation of surfactant molecules. Colloidal Surface A: Physicochemical Engineering Aspects, 297, 258–266.Google Scholar
Chen, Y.F., Zhou, S.H., Yang, X.J. & Ou-Yang, Y. (2010) Structural and optical properties of ZnS/niobate composites synthesized by exfoliation/self-assembly processing. Journal of Solid State Chemistry, 183, 823–828.CrossRefGoogle Scholar
Denzler, D., Olschewski, M. & Sattler, K. (1998) Luminescence studies of localized gap states in colloidal ZnS nanocrystals. Journal of Applied Physics, 84, 2841–2485.CrossRefGoogle Scholar
Díaz, U., Cantín, Á. & Corma, A. (2007) Novel layered organic-inorganic hybrid materials with bridged silsesquioxanes as pillars. Chemistry of Materials, 19, 3686–3693.CrossRefGoogle Scholar
Evans, H. & McKnight, E. (1959) New wurtzite polytypes from Joplin, Missouri. American Mineralogist, 44, 1210–1218.Google Scholar
Eypert-Blaison, C., Humbert, B., Michot, L.J., Pelletier, M., Sauzéat, E. & Villiéras, F. (2001a) Structural role of hydration water in Na- and H-magadiite:A spectroscopic study. Chemistry of Materials, 13, 4439–4446.CrossRefGoogle Scholar
Eypert-Blaison, C., Sauzéat, E., Pelletier, M., Michot, L.J., Villiéras, F. & Humbert, B. (2001b) Hydration mechanisms and swelling behavior of Na-magadiite. Chemistry of Materials, 13, 1480–1486.CrossRefGoogle Scholar
Feng, F.X. & Balkus, K.J. (2003) Synthesis of kenyaite, magadiite and octosilicate using poly(ethylene glycol) as a template. Journal of Porous Matererials, 10, 5–15.Google Scholar
Garces, J.M., Rocke, S.C., Crowder, C.E. & Hasha, D.L. (1988) Hypothetical structures of magadiite and sodium octosilicate and structural relationships between the layered alkali metal silicates and the mordenite- and pentasil-group zeolites, Clays and Clay Minerals, 36, 409–418.CrossRefGoogle Scholar
Guerra, D.L., Pinto, A.A., Airoldi, C. & Viana, R.R. (2008) Adsorption of arsenic(III) into modified lamellar Namagadiite in aqueous mediumùThermodynamic of adsorption process. Journal of Solid State Chemistry, 181, 3374–3379.CrossRefGoogle Scholar
Han, S.D., Kim, J.D., Myung, K.S., Lee, Y.H., Yang, H. & Singh, K.C. (2007) Uniform and continuous SiO2 coating on ZnS phosphor. Materials Chemistry and Physics 103, 89–9.CrossRefGoogle Scholar
Huang, Y.N., Jiang, Z.M. & Schwieger, W. (1999) Vibrational spectroscopic studies of layered silicates. Chemistry of Materials, 11, 1210–1217.CrossRefGoogle Scholar
Khaorapapong, N., Ontam, A. & Ogawa, M. (2010) Formation of ZnS and CdS in the interlayer spaces of montmorillonite. Applied Clay Science, 50, 19–24.CrossRefGoogle Scholar
Kooli, F. & Yan, L. (2009) Thermal stable cetyltrimethy lammonium-magadiites: Influence of the surfactant solution type. Journal of Physical Chemistry C, 113, 1947–1952.CrossRefGoogle Scholar
Kooli, F., Kiyozumi, Y. & Mizukami, F. (2002) Effect of alkali cations on the conversion of H-magadiite in tetramethy lammonium hydroxide–water–1,4-dioxane system. Materials Chemistry and Physics, 77, 134–140.Google Scholar
Kozak, O., Praus, P., Kocí, K. & Klementova, M. (2010) Preparation and characterization of ZnS nanoparticles deposited on montmorillonite. Journal of Colloid and Interface Science, 352, 244–251.CrossRefGoogle ScholarPubMed
Kwon, O.Y., Jeong, S.Y., Suh, J.K. & Lee, J.M. (1995) Hydrothermal synthesis of Na-magadiite and Nakenyaite in the presence of carbonate. Bulletin of the Korean Chemical Society, 16, 737–742.Google Scholar
Lagaly, G., Beneke, K. & Weiss, A. (1975) Magadiite and H-magadiite: I. Sodium magadiite and some of its derivatives. American Mineralogist, 60, 642–649.Google Scholar
Lu, C.L., Cui, Z.C., Wang, Y., Li, Z., Guan, C., Yang, B. & Shen, J.C. (2003) Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. Journal of Materials Chemistry, 13, 2189–2195.Google Scholar
Lu, J.F., Zeng, X.H., Liu, H.F., Zhang, W. & Zhang, Y. (2012) Controlled growth and photoluminescence of one-dimensional and platelike ZnS nanostructures. Applied Surface Science, 258, 8538–8541.CrossRefGoogle Scholar
Macedo, T.R., Petrucelli, G.C. & Airoldi, C. (2007) Silicic acid magadiite as a host for n-alkydiamine guest molecules and features related to the thermodynamics of intercalation. Clays and Clay Minerals, 55, 151–159.CrossRefGoogle Scholar
Manzoor, K., Vadera, S.R., Kumar, N. & Kutty, T.R.N. (2004) Multicolor electroluminescent devices using doped ZnS nanocrystals. Applied Physics Letters, 84, 284–286.CrossRefGoogle Scholar
Mehta, S.K., Kumar, S. & Gradzielski, M. (2011) Growth, stability, optical and photoluminescent properties of aqueous colloidal ZnS nanoparticles in relation to surfactant molecular structure. Journal of Colloid and Interface Science, 360, 497–507.CrossRefGoogle ScholarPubMed
Ni, Y.H., Ge, X.W. & Zhang, Z.C. (2005) Preparation and characterization of ZnS/ poly(acrylamide-co-acrylic acid) dendritical nanocomposites by g-irradiation. Materials Science and Engineering B, 119, 51–54.CrossRefGoogle Scholar
Oliver, D.S., Vohl, P., Aldrich, R.E., Behrndt, M.E. & Buchan, W.R. (1970) Image storage and optical readout in a ZnS device. Applied Physics Letters, 15, 416–418.Google Scholar
Pan, S.G. & Liu, X.H. (2012) ZnS-graphene nanocomposite: Synthesis, characterization and optical properties. Journal of Solid State Chemistry, 191, 51–56.CrossRefGoogle Scholar
Peng, S.G., Gao, Q.M., Du, Z.L. & Shi, J.L. (2006) Precursors of TAA-magadiite nanocomposites. Applied Clay Science, 31, 229–237.CrossRefGoogle Scholar
Petrucelli, G.C., Meirinho, M.A., Macedo, T.R. & Airoldi, C. (2006) Crystalline polysilicate magadiite with intercalated n-alkylmonoamine and some correlations involving the rmochemical data. Thermochimica Acta, 450, 16–21.CrossRefGoogle Scholar
Rizzo, A., Li, Y.Q., Kudera, S., Sala, F.D., Zanella, M., Parak, W.J., Cingolani, R., Manna, L. & Gigli, G. (2007) Blue light emitting diodes based on fluorescent CdSe/ZnS nanocrystals. Applied Physics Letters, 90, 051106/1–3.CrossRefGoogle Scholar
Sayle, D.C., Mangili, B.C., Klinowski, J. & Sayle, T.X.T. (2006) Simulating self-assembly of ZnS nanoparticles into mesoporous materials. Journal of the American Chemical Society, 128, 15283–15291.CrossRefGoogle ScholarPubMed
Schneider, J. & Kirby, R.D. (1972) Raman scattering from ZnS polytypes. Physical Review B, 6, 1290–1294.CrossRefGoogle Scholar
Schwieger, W., Heidemann, D. & Bergk, K.H. (1985) Nuclear magnetic resonance spectroscopic studies of synthetic sodium silicate hydrates. Revue de. Chimie. Minerale, 22, 639–650.Google Scholar
Song, J.T., Wu, S.J. &. Zhao, Y.L. (2013) Encapsulation of CdSe/ZnS nanocrystals within mesoporous silica spheres. Materials Research Bulletin, 48, 1530–1535.CrossRefGoogle Scholar
Sung, T.W. & Lo, Y.L. (2012) Highly sensitive and selective sensor based on silica-coated CdSe/ ZnS nanoparticles for Cu2+ ion detection. Sensors and Actuators B, 165, 119–125.CrossRefGoogle Scholar
Taghavinia, N. & Yao, T. (2004) ZnS nanocrystals embedded in SiO2 matrix, Physica E, 21, 96–102.CrossRefGoogle Scholar
Tiwari, A., Khan, S.A. & Kher, R.S. (2012) Study of size dependent photoluminescence properties of copper doped sodium hexametaphosphate capped ZnS nanoparticles. Journal of Luminescence, 132, 1564–1567.CrossRefGoogle Scholar
Ullah, M.H., Kim, J.H. & Ha, C.S. (2008) Highly transparent o-PDA functionalized ZnS-polymer nanocomposite thin films with high refractive index. Material Letters, 62, 2249–2252.CrossRefGoogle Scholar
Ummartyotin, S.S., Bunnak, N., Juntaro, J. & Sain, M., Manuspiya, H. (2012) Hybrid organic-inorganic of ZnS embedded PVP nanocomposite film for photoluminescent application. Comptes Rendus Physique, 13, 994–1000.CrossRefGoogle Scholar
Unni, C., Philip, D. & Gopchandran, K.G. (2009) Studies on optical absorption and photoluminescence of thioglycerol-stabilized ZnS nanoparticles. Optical Materials, 32, 169–175.CrossRefGoogle Scholar
Vorokh, A.S., Kozhevnikov, N.S., Uritskaya, A.A. & Magerl, A. (2008) The synthesis of nucleus-shell Cd(OH)2/CdS structures by chemical precipitation from aqueous solutions. Russian Journal of Physical Chemistry A, 82, 1132–1139.CrossRefGoogle Scholar
Wageh, S., Al-Ghamdi, A.A. & Yakuphanoglu, F. (2013) Band edge emission of ZnS nanoparticles prepared by excess of thiourea as a source of sulfur. Journal of Sol-Gel Science Technology, 66, 443–451.CrossRefGoogle Scholar
Wang, Y.W., Zhang, L.D., Liang, C.H., Wang, G.Z. & Peng, X.S. (2002) Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires. Chemical Physics Letters, 357, 314–318.CrossRefGoogle Scholar
Wang, Z. & Pinnavaia, T. J. (2003) Intercalation of poly(propyleneoxide) amines (jeffamines) insynthetic layered silicas derived from ilerite, magadiite, and kenyaite. Journal of Materials Chemistry, 13, 2127–2131.CrossRefGoogle Scholar
Xi, H.G. Qian, X.F., Yin, J., Bian, L.J., He, R. & Zhu, Z.K. (2003) Photoluminescence of ZnŚPVK nanocomposites confined in ethylenediamine modified MCM-41. Materials Letters, 57, 2657–2661.CrossRefGoogle Scholar
Xie, Y., Zhang, C.L., Miao, S.D., Liu, Z.M., Ding, K.L., Miao, Z.J., An, G.M. & Yang, Z.Z. (2008) One-pot synthesis of ZnS/polymer composites in supercritical CO2-ethanol solution and their applications in degradation of dyes. Journal of Colloid and Interface Science, 318, 110–115.CrossRefGoogle ScholarPubMed
Yang, P., Lu, M., Xu, D.,. Yuan, D.L & Zhou, G. (2001) Photoluminescence properties of ZnS nanoparticles co-doped with Pb2+ and Cu2+ . Chemical Physics Letters, 336, 7680.CrossRefGoogle Scholar
Yukutake, H., Kobayashi, M., Otsuka, H. & Takahara, A. (2009) Thermal degradation behavior of polystyrene/magadiite nanocomposites prepared by surfaceinitiated nitroxide-mediated radical polymerization. Polymer Journal, 41, 555–561.CrossRefGoogle Scholar
Zhang, J., Han, B., Hou, Z., Lin, Z., He, J. & Jiang, T. (2003) Novel method to load nanoparticles into mesoporous materials: Impregnation of MCM-41 with ZnS by compressed CO2 . Langmuir, 19, 7616–762.CrossRefGoogle Scholar
Zhang, W.H., Shi, J.L., Chen, H.R., Hua, Z.L. & Yan, D.S. (2001) Synthesis and characterization of nanosized ZnS confined in ordered mesoporous silica. Chemistry of Materials, 13, 648–654.CrossRefGoogle Scholar
Zhang, Y.G., Lu, F. Wang, Z.Y. (2007) ZnS nanoparticleassisted synthesis and optical properties of ZnS nanotowers. Crystal Growth & Design, 7, 1459–146.CrossRefGoogle Scholar
Zhu, J., Zhou, M., Xu, J. & Liao, X. (2001) Preparation of CdS and ZnS nanoparticles using microwave irradiation. Materials Letters, 47, 25–29.CrossRefGoogle Scholar