Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T06:16:02.082Z Has data issue: false hasContentIssue false

Surface heterogeneity of kanemite, magadiite and kenyaite: a high-resolution gas adsorption study

Published online by Cambridge University Press:  09 July 2018

C. Eypert-Blaison
Affiliation:
Laboratoire Environnement et Minéralurgie, INPL-ENSG-CNRS UMR 7569, BP 40, 54501 Vandœuvre Cedex, France
F. Villiéras
Affiliation:
Laboratoire Environnement et Minéralurgie, INPL-ENSG-CNRS UMR 7569, BP 40, 54501 Vandœuvre Cedex, France
L. J . Michot*
Affiliation:
Laboratoire Environnement et Minéralurgie, INPL-ENSG-CNRS UMR 7569, BP 40, 54501 Vandœuvre Cedex, France
M. Pelletier
Affiliation:
Laboratoire Environnement et Minéralurgie, INPL-ENSG-CNRS UMR 7569, BP 40, 54501 Vandœuvre Cedex, France
B. Humbert
Affiliation:
Laboratoire de Chimie Physique Pour l'Environnement, UHP-CNRS UMR 7564, 405, route de Vandœuvre, 54600 Villers les Nancy, France
J . Ghanbaja
Affiliation:
Service Commun de Microscopie Electronique à Transmission, Faculté des Sciences, Université Henri Poincaré, BP 239, 54500 Vandœuvre Cedex, France
J . Yvon
Affiliation:
Laboratoire Environnement et Minéralurgie, INPL-ENSG-CNRS UMR 7569, BP 40, 54501 Vandœuvre Cedex, France
*

Abstract

The surface properties of various synthetic layered silicates, Na-kanemite, Nakenyaite and magadiite, exchanged with H, K and Ca, were examined using high-resolution nitrogen and argon adsorption and the data were treated using the Derivative Isotherm Summation method. Using argon as an adsorbate, the aspect ratio of platelets can be determined. In the case of magadiite exchanged with various cations, the stacking of particles is influenced by the nature of the exchangeable cations, thicker platelets being observed for ions with low polarizability. Highresolution argon adsorption data also confirm some structural information previously deduced from Raman spectroscopy experiments concerning the existence of rather open six-membered rings at the surfaces of both magadiite and kenyaite. Furthermore, in the low-energy domain of the isotherms, argon forms a very organized film on basal planes, suggesting a commensurate relationship between silica framework and argon atoms for both magadiite and kenyaite, contrary to what is observed for kanemite. Nitrogen adsorption results reveal the presence of polar sites on the surface of all the investigated minerals but does not allow us to propose an unequivocal assignment for such sites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardot, F., Villiéras, F., Michot, L.J., François, M., Gérard, G. & Cases, J.M. (1998) High resolution gas adsorption study on illites permuted with various cations: Assessment of surface energetic properties. Journal of Dispersion Science and Technology, 19, 739759.Google Scholar
Bardot, F., Villiéras, F., Michot, L.J., François, M., Gérard, G. & Cases, J.M. (1999) Application of very low relative pressure adsorption volumetry to study surface properties of clay minerals. Proceedings of the 11th International Clay Conference, Ottawa, Canada 1997, 339344.Google Scholar
Beneke, K. & Lagaly, G. (1983) Kenyaite – synthesis and proper ties. American Mineralogist, 68, 818826.Google Scholar
Brindley, G.W. (1969) Unit cell of magadiite in air, in vacuo, and other conditions. American Mineralogist, 54, 1583–1591.Google Scholar
Chamerois, M. (2000) Interactions entre trisiloxanes fonctionnalisés et surfaces minérales: Applications à l’hydrofugati on. PhD thesis, Institut National Polytechnique de Lorraine, Nancy, France.Google Scholar
Dailey, J.S. & Pinnavaia, T.J. (1992) Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica. Chemistry of Materials, 4, 855863.Google Scholar
De Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., Van den Heuvel, A. & Osinga, Th.J. (1966) The t-curve of multimolecular N2 adsorption. Journal of Colloid and Interface Science, 21, 405414.Google Scholar
Döring, J., Beneke, K. & Lagaly, G. (1992) Adsorption properties of crystalline silicas: (II) Adsorption of anionic surfactants and delamination. Colloid and Polymer Science, 270, 609616.Google Scholar
Eugster, H.P. (1967) Hydrous sodium silicates from Lake Magadi, Kenya: Precursors of bedded chert. Science, 157, 11771180.Google Scholar
Eypert-Blaison, C., Humbert, B., Michot, L.J., Pelletier, M., Sauzéat, E. & Villiéras, F. (2001a) Structural role of hydration water in Na- and H-magadiite: a spectroscopic study. Chemistry of Materials, 13, 4439–4446.Google Scholar
Eypert-Blaison, C., Sauzéat, E., Pelletier, M., Michot, L.J., Villiéras, F. & Humbert, B. (2001b) Hydration mechanisms and swelling behavior of Na-magadiite. Chemistry of Materials, 13, 14801486.Google Scholar
Fletcher, R.A. & Bibby, D.M. (1987) Synthesis of kenyaite and magadiite in the presence of various anions. Clays and Clay Minerals, 35, 318320.Google Scholar
Garcès, J.M., Rocke, S.C., Crowder, C.E. & Hasha, D.L. (1988) Hypothetical structures of magadiite and sodium octosilicate and structural relationships between the layered alkali metal silicates and the mordenite- and pentasil-group zeolites. Clays and Clay Minerals, 36, 409418.CrossRefGoogle Scholar
Garvie, L.A.J., Devouard, B., Groy, T.L., Camara, F. & Buseck, P.R. (1999) Crystal structure of kanemite, NaHSi2O5.3H2O, from the Aris phonolite, Namibia. American Mineralogist, 84, 11701175.Google Scholar
Huang, Y., Jiang, Z. & Schwieger, W. (1999) Vibrational spectroscopic studies of layered silicates. Chemistry of Materials, 11, 12101217.Google Scholar
Jeong, S.Y & Lee, J.M. (1998) Removal of heavy metal ions from aqueous solutions by adsorption on magadiite. Bulletin of the Korean Chemical Society, 19, 218222.Google Scholar
Johan, Z. & Maglione, J.F. (1972) La kanémite, nouveau silicate de sodium hydraté de néoformation. Bulletin de la Socié té franc¸aise de Minéralogie et de Cristallographie, 95, 371382.Google Scholar
Kim, C.S., Yates, D.M. & Heaney, P.J. (1997) The layered sodium silicate magadiite: an analog to smectite for benzene sorption from water. Clays and Clay Minerals, 45, 881885.Google Scholar
Lagaly, G. & Beneke, K. (1991) Intercalation and ion exchange reactions of clay minerals and non-layer compounds. Colloid and Polymer Science, 269, 11981211.Google Scholar
Lagaly, G., Beneke, K. & Weiss, A. (1975a) Magadiite and H-magadiite: I. Sodium magadiite and some of its deriva tives. Ameri can Mineral ogist, 60, 642649.Google Scholar
Lagaly, G., Beneke, K. & Weiss, A. (1975b) Magadiite and H-magadiite: II. H-magadiite and its intercalation compounds. American Mineralogist, 60, 650658.Google Scholar
Landis, M.E., Aufdembrink, B.A., Chu, P., Johnson, I.D., Kirker, G.W. & Rubin, M.K. (1991) Preparation of molecular sieves from dense, layered metal oxides. Journal of American Chemical Society, 113, 31893190.Google Scholar
McAtee, J.L., House, R. & Eugster, H.P. (1968) Magadiite from Trinity County, Cali fornia. American Mineralogist, 53, 20612069.Google Scholar
Michot, L.J., François, M. & Cases, J.M. (1990) Surface heterogeneity studied by a quasi-equilibrium gas adsorption procedure. Langmuir, 6, 677681.Google Scholar
Michot, L.J., Villiéras, F., François, M., Yvon, J., Le Dred, R. & Cases, J.M. (1994) The structural microscopic hydrophobicity of talc. Langmuir, 10, 37653773.Google Scholar
Michot, L.J. & Villiéras, F. (2002) Assessment of surface energetic heterogeneity of synthetic Na-saponites. The role of layer charge. Clay Minerals, 37, 3957.Google Scholar
Muraishi, H. (1996) Variations of surface property and interplanar spacing of kenyaite and magadiite with ion exchange and heating. Nendo Kagaku, 36, 2234.Google Scholar
Muraishi, H. (1999) Effects of the exchangeable alkali metal ions on the thermal behaviour of magadiite and kenyaite. Nendo Kagaku, 38, 188196.Google Scholar
Pinnavaia, T.J. (1983) Intercalated clay catalysts. Science, 220, 371389.Google Scholar
Rojo, J.M., Ruiz-Hitzky, E., Sanz, J. & Serratosa, J.M. (1983) Characterization of surface Si-OH groups in layer silicic acids by IR and NMR spectroscopies. Revue de Chimie Minérale, 20, 807816.Google Scholar
Rojo, J.M., Ruiz-Hitzky, E. & Sanz, J. (1988) Protonsodium exchange in magadiite. Spectroscopic study (NMR, IR) of the evolution of interlayer OH groups. Inorganic Chemistry, 27, 27852790.Google Scholar
Rooney, T.P. (1969) Magadiite from alkali lake, Oregon. American Mineralogist, 54, 10341043.Google Scholar
Sprung, R., Davis, M.E., Kauffman, J.S. & Dybowski, C. (1990) Pillaring of magadiite with silicate species. Industrial and Engineering Chemical Research, 29, 213220.Google Scholar
Villiéras, F., Cases, J.M., François, M., Michot, L.J. & Thomas, F. (1992) Texture and surface energetic heterogeneity of solids from modeling of low pressure gas adsorption isotherms. Langmuir, 8, 17891795.Google Scholar
Villiéras, F., Michot, L.J., Bardot, F., Cases, J.M., François, M. & Rudzinski, W. (1997a) An improved derivative isotherm summation method to study surface heterogeneity of clay minerals. Langmuir, 13, 11041117.CrossRefGoogle Scholar
Villiéras, F., Michot, L.J., Cases, J.M., Bérend, I., Bardot, F., François, M., Gérard, G. & Yvon, J. (1997b) Static and dynamic studies of the energetic surface heterogeneity of clay minerals. Pp. 573623 in: Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces (Rudzinski, W., Steele, W.A. & Zgrablich, G., editors). Studies in Surface Science and Catalysis, 104, Elsevier Science Publishers B.V., Amsterdam.Google Scholar
Villiéras, F., Leboda, R., Charmas, R., Bardot, F., Gérard, G. & Rudzinski, W. (1998) High resolution argon and nitrogen adsorption assessment of the surface heterogeneity of carbosils. Carbon, 36, 15011510.Google Scholar
Vortmann, S., Rius, J., Marler, B. & Gies, H. (1999) Structure solution from powder data of the hydrous layer silicate kanemite, a precursor of the industrial ion exchanger SKS – 6. European Journal of Mineralogy, 11, 125134.Google Scholar