Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T04:08:32.306Z Has data issue: false hasContentIssue false

The Şahin village (Kütahya, Turkey) clay deposit and its possible utilization

Published online by Cambridge University Press:  09 July 2018

G. Yanik*
Affiliation:
Dumlupınar University, Department of Geological Engineering, Kütahya 43100, Turkey
R. Ceylantekin
Affiliation:
Dumlupınar University, Department of Ceramic Engineering, Kütahya 43100, Turkey
E. Taşçi
Affiliation:
Dumlupınar University, Department of Ceramic Engineering, Kütahya 43100, Turkey
Ü. Özçay
Affiliation:
Gürallar of Roofing Tile Factory, Kütahya 43100, Turkey
*

Abstract

The Şahin-village clay deposit, situated in the vicinity of Kütahya, western Turkey, has a promising reserve suitable for tile production. In order to evaluate its potential use, 27 clay samples were collected and their mineralogical, chemical, firing and technological properties were evaluated. The reaction of samples with dilute HCl, dispersion in water and their swelling properties were determined. Mineral identification studies were conducted using X-ray powder diffraction (XRD), differential thermal analyses (DTA) and scanning electron microscopy (SEM) techniques. Analysis showed that clay minerals are illite, kaolinite and montmorillonite. Non-clay minerals are quartz, muscovite, microcline and goethite. The clay samples consisted mainly of SiO2 and Al2O3 corresponding to about 81–83% (average) because of the presence of clay minerals and quartz, accompanied by a significant amount of iron oxide. Mineralogical, chemical, thermal analysis and technological tests showed that the clays from Şahin village could be used for stoneware tiles, tile and brick-making.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksan, S. (1971) Aktepe Resistivite Etüdü. Report no. 468, Etibank Ankara.Google Scholar
Aksan, S. & Urgancıoğlu, I. (1970) Aktepe Resistivite Etüdü. Report no. 463, Etibank Ankara.Google Scholar
Aras, A. (2004) The change of phase composition in kaolinite and illite-rich clay-base ceramic bodies. Applied Clay Science, 24, 257–269.CrossRefGoogle Scholar
Arık, F. (2002) Gümüşköy (Kütahya) gümüş yatağının jeokimyasal modellemesi. Selçuk üniversitesi Fen Bilimleri Enstitüsü Doctoral Thesis, 318 pp.Google Scholar
Arık, F. & Nalbantçılar, M.T. (2004) Köprüö ren (Kütahya) havzasındaki metalik maden yataklarının sulara etkisi. TMMOB, Jeoloji Mühendisleri Odası, 57. Türkiye Jeoloji Kurultayı, Genişletilmiş Bildiri Özleri Kitabı, 08-12 March 2004, 261–262.Google Scholar
Arık, F. & Nalbantçılar, M.T. (2005a) Kütahya Batısındaki Maden Yataklarının Yüzey ve Yeraltı Sularına Olumsuz Etkisi. TMMOB, Jeoloji Mühendisleri Odası, 58. Türkiye Jeoloji Kurultayı, Genişletilmiş Bildiri Özleri Kitabı, 11-17 2005, 259–260.Google Scholar
Arık, F. & Nalbantçılar, M.T. (2005b) Maden İşletmeciliğinin çevre ve Halk Sağlığına Etkisi, Gümüşköy-Kütahya, 1. Tıbbi Jeoloji Sempozyumu, 1-3 Aralık 2005, MTA Gen. Müd. Kültür Sitesi, Ankara, Bildiri Özleri, 63–64.Google Scholar
Arslan, ş. (2007) şahin, Aliköy ve Köreken Köyleri (Kötahya) Arasında Bulunan Suların Halk Sağlığı Açısından Değerlendirilmesi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 104 pp.Google Scholar
Butterworth, B. (1953) Pp. 824–877 in: The Properties of Clay Building Materials in Ceramics – A Symposium (Green, A.T. & Stewart, G.H., editors). British Ceramic Society, London.Google Scholar
Eraslan, R. (1971) Aktepe 1/25.000 Ölçekli Jeoloji Etüdü. Report no. 424, Etibank, Ankara.Google Scholar
Fischbach, W. (1900) Kütahya-Gümüşköy Arazi Etüdü, M.T.A.E. Derleme Report no. 374, Ankara.Google Scholar
Holdridge, D.A. (1953) Pp. 60–93 in: The Colloidal and Rheological Properties of Clays in Ceramics – A Symposium (Green, A.T. & Stewart, G.H., editors). British Ceramic Society, London.Google Scholar
Hyslop, J.F. (1953) Pp. 186–200 in: The Action of Heat on Clays in Ceramics –A Symposium (Green, A.T. & Stewart, G.H., editors). British Ceramic Society, London.Google Scholar
Ildız, T. (1967) M.T.A. 568 ve 137 Ruhsat No’lu Kurşun Sahalarının ö n Raporu, M.T.A.E. Arşivi Report no. 4266, Ankara.Google Scholar
Kalafatçıoğlu, A. (1962) Tavşanlı-Dağardı Arasındaki Bölgenin Jeoloji ve Serpantin ile Kalkerlerin Yaşı Hakkında Not, M.T.A. Dergi no. 58, Ankara.Google Scholar
Mackenzie, R.C. (1970) Differential Thermal Analysis of Clays, 1: Fundamental Aspects. Academic Press, New York.Google Scholar
Mason, B.H. (1994) Lightweight aggregates. Pp. 343–350 in: Industrial Minerals and Rocks, 6th edition (D.D. Carr, editor). Society for Mining. Metallurgy and Exploration. Littleton. Colorado.Google Scholar
Murray, H.H. (1994) Common clay. Pp. 247–248 in: Industrial Minerals and Rocks, 6th edition (D.D. Carr, editor). Society for Mining. Metallurgy and Exploration. Littleton, Colorado.Google Scholar
Murray, H.H. (2007) Applied clay mineralogy; occurrences. processing and application of kaolins, bentonites, palygorskite-sepiolite and common clays. Developments in Clay Science, 2. Elsevier. ISBN: 978-0-444-51701-2.Google Scholar
Murray, H.H. & Smith, J.M. (1958) Lightweight aggregate potentialities of some Indiana shales. Indiana Geological Survey Report of Progress, No. 12, 42 pp.Google Scholar
Norton, F.H. (1948) Fundamental study of clay; VIII, a new theory for the plasticity of clay–water masses. Journal of the American Ceramic Society, 31, 236–240.Google Scholar
Özker, E. (1970) Aktepe 1/25.000 Ölçekli Jeoloji Etüdü, Report no. 300, Etibank Ankara.Google Scholar
TS EN ISO 10545-3 Seramik Karolar Bölüm 3: Su Emme, Görünür Gözeneklilik, Görülür Bağıl Yoğunluk ve Hacim Kütlesinin TayiniGoogle Scholar
TS EN ISO 10545-4 Seramik Karolar Bölüm 4: Eğilme ve Kırılma Dayanımı TayiniGoogle Scholar
Uz, V. (2010) Use of pyrophillite-bearing red clay for ceramic tile production. Industrial Ceramics, 30, 169–175.Google Scholar
Vıcıl, M. (1982) Gümüşköy (Kütahya) Aktepe Pb-Zn-Sb-Ag cevherleşmesi. Ege üniversitesi Yerb. Fak. Doctoral Thesis, 258 pp.Google Scholar
Wattanasiriwech, D., Srijan, K. & Wattanasiriwech, S. (2009) Vitrification of illitic clay from Malaysia, Applied Clay Science, 43, 57–62.Google Scholar
Yaldız, T. (2007) Aliköy, Vakıf ve Köreken (Tavşanlı- KÜTAHYA) Köyleri Arasındaki Mineral zenginleşmesi ve Halk Sağlığına Etkileri: S.Ü. Fen Bilimleri Enstitüsü Jeo. Müh. BölümüAnabilimdalı Yüksek Lisans Tezi 114 pp.Google Scholar
Yiğitgüden, H.Y. (1984) Batı Anadolu – Türkiye Kütahya civarındaki gümüş maden yatağı; Rainland Westfalen Tek. Yük. Ok. Maden. Ve Met. Fak. (Aachen) Doctoral Thesis, 192 pp.Google Scholar