Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T14:38:02.389Z Has data issue: false hasContentIssue false

A reassessment of the 29Si MAS-NMR spectra of sepiolite and aluminated sepiolite

Published online by Cambridge University Press:  09 July 2018

J.-B. D'Espinose de la Caillerie*
Affiliation:
Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, Wisconsin 53201, USA
J. J. Fripiat
Affiliation:
Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, Wisconsin 53201, USA
*
*Current address: Ecole Supèrieure de Physique de Physique et de Chimie lndustrielle, Laboratoire de Physique Quantique, 10 rue Vauquelin, 75231 Paris Cedex 05, France.

Abstract

A 29Si MAS-NMR one-pulse and ﹛1H﹜ CP comparative study of sepiolite, folded sepiolite, aluminated sepiolite, and palygorskite was conducted. The three main resonances of sepiolite at -92.0 ± 0.1, —94.3 + 0.1, and — 97.8 ± 0.1 p.p.m. were assigned with respect to the position of the Si atoms within the three pairs of symmetrical sites in the basal plane. The line at —97.8 p.p.m. was attributed to the central sites by comparison with the resonances and chemical environments of Si in talc and palygorskite. The line at —94.3 p.p.m. was attributed to the edge sites, because it is strongly reinforced by cross-polarization. Alumination of sepiolite led to a broadening of the peaks and new downfield resonances in line with what can be observed in other phyllosilicates and zeolites.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, A., Aragon, J.J. & Perez-Castells, R. (1984) A rheological grade sepiolite and process for its manufacture. European Patent 0170299.Google Scholar
Aznar, A.J., Casal, B., Ruiz-Hitzku, E., Lopez-Arbeloa, I., Lopez-Arbeloa, F., Santaren, J. & Alvarez, A. (1992) Adsorption of methylene blue on sepiolite gels: spectroscopic and rheological studies. Clay Miner. 27, 101108.CrossRefGoogle Scholar
Barron, P.F. & Frost, R.L. (1985) Solid-State 29Si NMR examination of the 2:1 ribbon magnesium silicates, sepiolite and palygorskite. Am. Miner. 70, 758766.Google Scholar
Brauner, K. & Preisinger, A. (1956) Struktur und Entste-hung des Sepioliths. Tschermaks Miner. u Petrogr. Mitt. 6, 120140.CrossRefGoogle Scholar
Espinose de la Caillerie, J.-B.d’ (1992) Synthesis of new catalysts and catalyst supports by secondary (IV) isomor-phic substitutions in phyllosilicates: vermiculites and sepiolites. PhD thesis, Univ. of Wisconsin-Milwaukee, USA.Google Scholar
Espinose de la Caillerie, J.-B.d’ & Fripiat, J.J. (1991) ‘Dealumination’ and aluminum intercalation of vermicu-lite. Clays Clay Miner. 39, 270280.CrossRefGoogle Scholar
Espinose de la Caillerie, J.-B.d’ & Fripiat, J.J. (1992) AI modified sepiolite as catalyst or catalyst support. Catal. Today 14, 125140.CrossRefGoogle Scholar
Fyfe, C.A., Gobal, G.C., Kenneov, G.J., De Schutter, C.T., Murphy, W.J., Ozubko, R.S. & Slack, D. A. (1984) Chemical shift dispersion due to crystallographic inequivalence and implications regarding the interpretation of the high-resolution 29Si MAS NMR spectra of zeolites. Chem. Lett. 163-166.CrossRefGoogle Scholar
Fyfe, C.A., Gottal, G.C., Murphy, W.J., Ozubko, R.S. & Slack, D.A. (1983b) Investigation of the factors affecting the 29Si MAS NMR linewidths of zeolites. Chem. Lett. 1547-1550.CrossRefGoogle Scholar
Fyfe, C.A., Thomas, J.M., Klinowski, J. & Goabl, G.C. (1983a) Magic-Angle-Spinning NMR (MAS NMR) spectroscopy and the structure of zeolites. Angew. Chem. Int. Ed. Engl. 22, 259336.CrossRefGoogle Scholar
Guggenheim, S. & Eggleton, R.A. (1988) Crystal chemistry, classification and identification of modulated layer silicates. P. 683 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S. W., editor), Reviews in Mineralogy vol. 19, Mineralogical Society of America, Washington, DC.Google Scholar
Güven, N., Espinose de la Caillerie, J.-B.d' & Fripiat, J.J. (1992) The coordination of aluminum ions in the palygorskite structure. Clays Clay Miner. 40, 457–461.CrossRefGoogle Scholar
Klinowski, J. & Anderson, M.W. (1986) A high-resolution solid-state nuclear magnetic resonance study of the ordering of silicon and aluminum in synthetic mazzite (zeolite omega). J. Chem. Soc. Faraday Trans. 1 82, 569584.CrossRefGoogle Scholar
Komarneni, S., Fyfe, C.A. & Kennedy, G.J. (1986) Detection of nonequivalent Si sites in sepiolite and palygorskite by solid-state 29Si Magic angle Spinning-Nuclear Magnetic Resonance. Clays Clay Miner. 34, 99102.CrossRefGoogle Scholar
Leonardelli, S., Facchini, L., Fretigny, C., Tougne, P. & Legrand, A.P. (1992) Silcon-29 nuclear magnetic resonance study of silica.. J. Am. Chem. Soc. 114, 64126418.CrossRefGoogle Scholar
López González, J. DE D., Ramírez Sáenz, A., Rodríguez Reinoso, F., Valenzuela Calahorro, C. & Zurita Herrera, L. (1981) Activación de una sepiolita con disoluciones diluidas de NO3H y posteriores tratamientos termicos: I. Estudio de la superficie específica. Clay Miner. 16, 103113.CrossRefGoogle Scholar
Melchior, M.T. (1983) Silicon and aluminum ordering of zeolites: interpretation of silicon-29 NMR data for faujasite and ZK4. Pp. 243265 in: Intrazeolite Chemistry (Stucky, G. A. & Dwyer, F.G., editors), ACS Symposium Series 218. American Chemical Society, Washington DC.CrossRefGoogle Scholar
Plee, D., Borg, F., Gatineau, L. & Fripiat, J.J. (1885) High-resolution solid-state 27Al and 29Si Nuclear Magnetic Resonance study of pillared clays.. J. Am. Chem. Soc. 107, 23622369.CrossRefGoogle Scholar
Preisinger, A. (1963) Sepiolite and related compounds: its stability and application. Clays Clay Miner. 10, 365371.CrossRefGoogle Scholar
Sanz, J. & Serratosa, J.M. (1984) 29Si and 27Al MAS-NMR spectra of Phyllosilicates. J. Am. Chem. Soc. 106, 47904793.CrossRefGoogle Scholar
Serna, C., Ahlrichs, J.L. & Serratosa, J.M. (1975) Folding in sepiolite crystals. Clays Clay Miner. 23, 452457.CrossRefGoogle Scholar
Vaughan, D.E.W., Melchior, M.T. & Jacoason, A.J. (1983) High resolution silicon-29 NMR of gallium faujasites and a gallium sodalite. Pp. 231242 in: Intrazeolite Chemistry (Stucky, G.A. & Dwyer, F.G., editors), ACS Symposium Series 218. American Chemical Society, Washington DC.CrossRefGoogle Scholar
Weiss, C.W. Jr., Altaner, S.P. & Kirkpatrick, R.J. (1987) High-resolution 29Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shift, structural distortions, and chemical variations. Am. Miner. 72, 935–94.Google Scholar