Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T19:47:06.972Z Has data issue: false hasContentIssue false

Rare-earth elements as tracers of the genetic relationship between smectite and palygorskite in marine phosphorites

Published online by Cambridge University Press:  09 July 2018

A. Chahi
Affiliation:
Centre de Géochimie de la Surface (CNRS-ULP), 1 rue Blessig, 67084 Strasbourg, France Faculté des Sciences de Semlalia, Boulevard du Prince Moulay Abdallah, Marrakech, Morocco
N. Clauer*
Affiliation:
Centre de Géochimie de la Surface (CNRS-ULP), 1 rue Blessig, 67084 Strasbourg, France
T. Toulkeridis
Affiliation:
Centre de Géochimie de la Surface (CNRS-ULP), 1 rue Blessig, 67084 Strasbourg, France Institut für Geowissenschaften, Johannes Gutenberg Universität, Saarstrasse, 55099 Mainz, Germany
M. Bouabdelli
Affiliation:
Faculté des Sciences de Semlalia, Boulevard du Prince Moulay Abdallah, Marrakech, Morocco
*
1Corresponding author

Abstract

Detrital smectite in a sandy claystone and a phosphorite, and authigenic palygorskite in a dolomitic marl and a porcellanite from Cretaceous-Tertiary phosphorite deposits of the Ganntour Basin (Morocco) were purified using cation exchange resin, leached with dilute acid, and analysed for the contents and distribution patterns of their REE before and after acid treatment. The normalized patterns confirm a detrital origin for the smectite in the sandy claystone, whereas the origin of the smectite from the phosphorite is obscured by the addition of REE from the phosphogenic environment. The normalized REE patterns of the palygorskite suggest formation in non-oxidizing restricted environments. The Al2O3REE ratio of the two clay types suggests formation of diagenetic palygorskite (and mixed-layer illite-smectite) from Al-bearing detrital smectite by a dissolution-crystallization process.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benalioulhaj, N. (1991) Les formations à phosphates et à schistes bitumineux du bassin des Oulad-Abdoun et du bassin de Timahdit: Pétrographie, Minéralogie, géochimie et environnement de dépôt. PhD thesis, Univ. Strasbourg, France.Google Scholar
Bonnot-Courtois, C. (1981) Géochimie des terres rares dans les principaux milieux de formation et de sédimentation des argiles. PhD thesis, Univ. Paris- Sud, France.Google Scholar
Chahi, A. (1996) Les minéraux argileux des gisements de phosphorites des Ganntour et de stévensite du Jbel Rhassoul (Maroc): relations génétiques entre les argiles 2:1 et les argiles fibreuses en conditions de surface. PhD thesis, Univ. Marrakech, Morocco.Google Scholar
Chahi, A., Weber, F., Prévôt, L. & Lucas, J. (1993) L'utilisation des résines échangeuses de cations (Amberlite IRC-50H) dans la dispersion et la purification des roches à carbonates, phosphates et sulfates. Clay Miner. 28, 585601.Google Scholar
Chaudhuri, S., Stille, P. & Clauer, N. (1992) Sm-Nd isotopes in fine-grained clastic sedimentary materials: Clues to sedimentary processes and recycling growth of the continental crust. Pp. 287-319 in: Isotopic Signatures and Sedimentary Record. (Clauer, N. & Chaudhuri, S., editors), Lecture Notes in Earth Sciences, 43, Springer Verlag, Heidelberg.Google Scholar
Clauer, N. (1982) Strontium isotopes of Tertiary phillipsites from the Southern Pacific: timing of the geochemical evolution. J. Sedim. Petrol. 52, 10031009.Google Scholar
Clauer, N., Chaudhuri, S., Kralik, M. & Bonnot-Courtois, C. (1993) Effects of experimental leaching on Rb-Sr and K-Ar isotopic systems and RE. contents of diagenetic illite. Chem. Geol. 103, 116.Google Scholar
Clauer, N., O'Neil, J.R., Bonnot-Courtois, C. & Holtzapffel, T. (1990) Morphological, chemical and isotopic evidence for an early diagenetic evolution of detrital smectite in marine sediments. Clays Clay Miner. 38, 3346.Google Scholar
De Baar, H.J.W., German, C.R., Elderfield, H. & Gaans, P. van (1988) Rare-earth element distribution in anoxic waters of the Cariaco Trench. Geochim. Cosmochim. Acta. 52, 1203-1219.Google Scholar
Lucas, J. & Prévôt-Lucas, L. (1993) Quelques réflexions sur la genèse de l'apatite sédimentaire et des séries phosphatées. Pp. 243-257 in: Sédimentologie et Géochimie de la Surfac. (Paquet, H. & Clauer, N., editors), Coll. Acad. Sci. Cadas, Paris.Google Scholar
McArthur, J.M. & Walsh, J.N. (1984) Rare-earth geochemistry of phosphorites. Chem. Geol. 47, 191220.Google Scholar
McArthur, J.M., Hamilton, P.J., Greensmith, J.T., Boyce, A.J., Fallick, A.E., Birch G, Walsh, J.N., Benmore RA. & Coleman MX. (1987) Phosphorite geochemistry: isotopic evidence for meteoric alteration of francolite on a local scale. Chem. Geol, Isot. Geosc. Sect.. 65, 415425.CrossRefGoogle Scholar
McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Pp. 169-196 in: Geochemistry and Mineralogy of Rare Earth Element. (Lipin, B.R. & Mackay, G.A., editors), Rev. in Mineral., 21, Mineralogical Society of America, Washington DC.Google Scholar
McLennan, S.M., Nance, W.B. & Taylor, S.R (1980) Rare earth element and thorium correlations in sedimentary rocks, and the composition of the continental crust. Geochim. Cosmochim. Acta. 44, 18331839.Google Scholar
Michard, A. (1976) Eléments de géologie marocaine. Notes Mëm. Serv. gëol. Maroc. p. 252.Google Scholar
Murray, R.W., Buchholtz ten Brink, M.R., Jones, D.L., Gerlach, D.C. & Russ, G.P. (1990) Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology. 18, 268271.Google Scholar
Prévôt, L. (1990) Geochemistry, petrography, genesis of Cretaceous-Eocene phosphorites. The Ganntour deposit (Morocco): a type example. Mém. Soc. géol. Fr.. p. 158.Google Scholar
Taylor, S.R. & McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.Google Scholar
Torres-Ruiz, J., Lopez-Galindo, A., Gonzales-Lopez, J.M. & Delgado, A. (1994) Geochemistry of Spanish sepiolite-palygorskite deposits: genetic considerations based on trace elements and isotopes. Chem. Geol. III. 221-245.Google Scholar
Wronckiewicz, D.J. & Condie, K.C. (1990) Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroups, South Africa: Cratonic evolution during the early Proterozoic. Geochim. Cosmochim. Acta. 54, 343354.Google Scholar