Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T14:48:54.732Z Has data issue: false hasContentIssue false

The quantitative phase analysis of clay minerals by X-ray diffraction: modern aspects of industrial routine control

Published online by Cambridge University Press:  09 July 2018

D. Minichelli*
Affiliation:
Ceramica Fine S.p.A., Sassuolo, Modena, Italy

Abstract

The method described uses external standard mixtures, both natural and artificial. Variations in degree of structural order between standard and analyte mineral are taken into account. ‘Amorphous’ materials in standard mixtures are simulated by alkali-boron-silicon glasses. Variations in response of the X-ray equipment with time are assessed by running a standard multiphase mixture. Strict control is exercised on particle orientation, and thermal treatments are used to separate overlapping reflections in the low-2θ region.

Resume

Resume

On décrit les résultats d'une recherche ayant pour but d'explorer les limites et les possibilités de la détermination quantitative par diffraction de rayons X de poudre pour des aggrégats complexes tel que les shistes et les minéraux argileux. On utilise la largeur à mi-hauteur des pics de diffraction pour calibrer les intensités intégrées. Le contrôle de la réponse électronique de l'équipement des rayons X est effectué en vue d'une calibration absolue des courbes analytiques par une méthode de moindre carré. Un contrôle strict de la forme des échantillons ainsi que le traitement thermique des poudres est utilisé pour obtenir de bons résultats en vue de séparer les réflexions qui se supperposent dans la zone des faibles valeurs de 2θ.

Kurzreferat

Kurzreferat

Zur quantitativen Phasenanalyse wird ein Verfahren beschrieben, für das sowohl synthetische als auch natürliche Standardproben verwendet werden. Unterschiede in der Kristallinität zwischen Standard- und Analysenmaterial werden berücksichtigt. Zur Simulation von ‘amorphem’ Material werden Alkali-Borosilicatgläser verwendet. Zeitliche Variationen des Meßsignals werden durch Zwischenschaltung von Multiphasen-Standards erfaßt. Besondere Beachtung wird auf eine konstante Orientierung der Partikel gelegt; Überlappungen im Kleinwinkelbereich werden durch thermische Behandlung der Proben ausgeschaltet.

Resumen

Resumen

El método utiliza mezclas externas standard, naturales y artificiales. Se tienen en cuenta las variaciones del grado de orden estructural entre los standards y los minerales a analizar. Los materiales ‘amorfos’, en las mezclas standard, son simulados con vidrios de borosilicatos alcalinos. Las variaciones en la respuesta del equipo de rayos X con el tiempo, son calculadas previamente utilizando una mezcla standard multifase. Se controla estrictamente el grado de orientación de las partículas, y para separar reflexiones superpuestas en la zona de pequeños ángulos, se usan tratamientos térmicos.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azaroff, L.V. & Buerger, M.J. (1958) The Powder Method in X-ray Crystallography. McGraw-Hill, New York.Google Scholar
Brown, G. (1961) The X-ray Identification and Crystal Structures of Clay Minerals. Mineralogical Society, London.Google Scholar
Engelhardt, W. Von (1955) The possibility of quantitative analysis of clays with X-rays. Z. Kristall. 106, 430459.Google Scholar
Flehmig, W. & Kurze, R. (1973) Quantitative phase analysis by infrared spectroscopy of mineral mixtures. Neues Jahrb. Mineral. 119, 101112.Google Scholar
Gibbs, R.J. (1969) Quantitative X-ray diffraction analysis using clay mineral standards extracted from the samples to be analyzed. Clay Miner. 7, 7990.Google Scholar
Gordon, R.L. & Harris, G.W. (1956) Geiger-Muller counter equipment for quantitative X-ray diffraction analysis of powders. Safety in Mines Res. Establishment. Res. Report 138, Sheffield, UK.Google Scholar
Hashimoto, I. & Jackson, M.L. (1980) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Clays Clay Miner. 7, 102113.Google Scholar
Jenkins, R., Hahm, Y. & Pearlman, S. (1979) A new dimension in qualitative and quantitative X-ray powder diffractometry. Norelco Rep. 26, 115.Google Scholar
Jenkins, R., Hahm, Y. & Villamizar, C. (1980) A qualitative analysis software package for use with the computer controlled powder diffractometer. Norelco Rep. 27, 1119.Google Scholar
Karlsson, W., Vollset, J., Bjørlykke, K. & Jørgensen, P. (1979) Changes in mineralogical composition of Tertiary sediments from North Sea wells. Proc. 6th Int. Clay Conf., Oxford, 281-289.Google Scholar
Kiely, P.V. & Jackson, M.L. (1965) Selective dissolution of micas from potassium feldspars by sodium pyrosulfate fusion of soils and sediments. Am. Miner. 49, 16481659.Google Scholar
Klug, H.P. & Alexander, L.E. (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Substances. John Wiley, New York.Google Scholar
Lucchini, E., Minichelli, D. & Meriani, S. (1973) The crystal structure of β-BaSrFe4O8 . Acta Cryst. B29, 919920.Google Scholar
Marel, H.W. van der (1966) Quantitative analysis of clay minerals and their mixtures. Contr. Miner. Petrol. 12, 96138.Google Scholar
Moore, C. (1968) Quantitative analysis of naturally occurring multicomponent mineral systems by X-ray diffraction. Clays Clay Miner. 16, 325336.Google Scholar
Niskanen, E. (1964) Reduction of orientation effects in the quantitative X-ray diffraction analysis of kaolin minerals. Am. Miner. 49, 705714.Google Scholar
Norrish, K. & Taylor, R.M. (1962) Quantitative analysis by X-ray diffraction. Clay Miner. Bull. 5, 98109.Google Scholar
Pease, R.S. (1948) Quantitative studies based on empirical instrumentation profiles. J. Sci. Instr. 25, 353357.Google Scholar
Srodon, J. (1979) Correlation between coal and clay diagenesis in the Carboniferous of the upper Silesian coal basin. Proc. 6th Int. Clay Confi, Oxford, 251260.Google Scholar
Till, R. & Spears, D.A. (1969) The determination of quartz in sedimentary rocks using an X-ray diffraction method. Clays Clay Miner. 17, 323327.Google Scholar
Wiewora, A. (1971) A mixed-layer kaolinite-smectite from lower Silesia, Poland. Clays Clay Miner. 19, 415416.CrossRefGoogle Scholar