Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T14:46:06.761Z Has data issue: false hasContentIssue false

Pillaring of synthetic hectorite by mixed [Al13-xFex] Pillars

Published online by Cambridge University Press:  09 July 2018

F. Bergaya
Affiliation:
CRMD-CNRS, 1B rue de la Férollerie, 45071 Orléans Cédex 02
N. Hassoun
Affiliation:
CRMD-CNRS, 1B rue de la Férollerie, 45071 Orléans Cédex 02
J. Barrault
Affiliation:
Laboratoire de catalyse en Chimie Organique, URA 350, CNRS, 40 Avenue du Recteur Pineau, 86022 Poitiers Cédex, France
L. Gatineau
Affiliation:
CRMD-CNRS, 1B rue de la Férollerie, 45071 Orléans Cédex 02

Abstract

The pillaring of a Laponite by alumina pillars, iron pillars and mixed Al-Fe pillars was obtained by a simple in situ method starting from AlCl3 and/or FeCl3 solutions with different molar ratio Fe/(Fe + Al), and from NaOH solution added simultaneously to the clay suspension. The Al13 pillars were evidenced by XRD and NMR spectra. The density and the charge of these pillars were calculated from the chemical analysis. The Fe pillars (in samples with Fe content >26%) are larger than Al13 pillars and slowly reducible by hydrogen temperature programmed reduction (H2TPR), but we do not have any information on their structure. There is also an excess of non-pillar Fe retained by the pillared clays probably as oxyhydroxides. The isomorphic substitution in the mixed (Al-Fe)13 pillars (in samples with an Fe content >26%) was evidenced by H2TPR results compared to the chemical analyses and by the interpretation of the 27A1 peaks in the NMR spectra.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergaya, F. (1978) Adsorption de molecules polaires adsorbées par la montmorillonite. Thèse de doctorat, Univ. d'Orléans, France.Google Scholar
Bergaya, F. (1990) Argiles à Piliers Pp. 511-558 in: Matériaux Argileux. Structures, Propriétés et Applications. SFMC, Paris.Google Scholar
Bradley, S.M. & Kydd, R.A. (1991) A comparison of the thermal stabilities of Gal3 Ga Al12 and Al3-pillared clay minerals. Cat. Letters 8, 185192.Google Scholar
Burch, R. (1988) Pillared clays. Pp. 185-186 in: Catalysis Today. 2 (R. Burch, Editor) Elsevier, Amsterdam.Google Scholar
Carrado, K.A., Suia, S.L., Skoularikis, N.D. & Coughun, R.W. (1986a) Chromium(III)-doped pillared clays (PILC's). Inorg. Chem. 25, 42174221.Google Scholar
Carrado, K.A., Kostapapas, A., Suib, S.L. & Coughlln, R.W. (1986b) Physical and chemical stabilities of pillared clays containing transition met al ions. Solid State Ionics, 22, 117125.Google Scholar
Figueras, F. (1988) Pillared clays as catalysts. Cat. Rev. Sci. Eng. 30, 457499.CrossRefGoogle Scholar
Gaaf, J., Van Santen, R., Knoester, A. & Van Wingerden, B. (1983) Synthesis and catalytic properties of pillared nickel substituted mica montmorillonite clays. J. Chem. Soc. Chem. Comm. 655-657.Google Scholar
Hassoun, N. (1989) Silicates lamellaires pontés. Synthése, Caractérisation et applications catalytiques. Thèse de Doctorat, Univ. d'Orléans, France.Google Scholar
Kostapapas, A., Sumib, S.L. & Coughlin, R.W. (1986) Mössbauer studies of iron containing pillared clays. 191st ACS Nat. Meet., New York Div. lnorg. Chem., Abstract 320.Google Scholar
Lee, W.Y. & Tatarchuk, B.J. (1988) Mössbauer studies of high surface area pillared-clays containing mixed met al complexes. Hyperf. Inter. 41, 661664.Google Scholar
Lee, W.Y., Raythatha, R.H. & Tatarchuk, B.J. (1989) Pillared-clay catalysts containing mixed-met al complexes. I. Preparation and characterization. J. Cat. 115, 159179.Google Scholar
Nowotny, H. & Funk, R. (1951) Ein Bertrag Zum system: Al2O3-Fe2O3-SiO2 . Radex Rundschau, 8, 334–340.Google Scholar
Occelli, M.L. (1986) New routes to the preparation of pillared montmorillonite catalysts. J. Mol. Cat. 35, 377-389.Google Scholar
Occelli, M.L. (1987) Surface and catalytic properties of some pillared clays. Proc. Int. Clay. Conf. Denver, 319-323.Google Scholar
Occelli, M.L. & Rennard, R.J. (1984) Hydrocracking with pillared clays. Prep. Rap. Am. Chem. Soc., 188Th Nat. ACS Meet. Div. Fuel Chem., Philadelphia 29, 3039.Google Scholar
Occelli, M.L. & Finset8 D.H. (1986) Preparation and characterization of pillared hectorite catalysts. J. Cat. 99, 316–326.Google Scholar
PléE, D. (1984) Synthèse et caraetérisation de composés d'insertion de smectites. Thèse de Docteur-Ingénieur, Univ. d'Orléans, France.Google Scholar
Skoularikis, N.D., Coughlin, R.W., Kostapapas, A., Carrado, K. & Sum, S.I. (1988) Catalytic performance of iron(III) and chromium(III) exchanged pillared clays. Appl. Cat. 39, 6176.Google Scholar
Sterte, J. & Shabtai, J. (1987) Cross-linked smectites. V. Synthesis and properties of hydroxy-silicoaluminum montmorillonites and fluorhectorites. Clays Clay Miner. 35, 429439.Google Scholar
Suib, S.L., Tanguay, F.J. & Occelli, M.L. (1986) Comparison of the photochemical and photophysical properties of days, Pillared clays and zeolites. J. Am. Chem. Soc. 108, 69726977.Google Scholar
Tzou, M.S. (1983) Clay catalysts pillared by met al hydroxy polymers. PhD thesis, Michigan Univ., Usa.Google Scholar
Vaughan, D.E.W. (1987) Multimet allic pillared interlayered clay products and processes. US Patent no. 4 666877.Google Scholar
Vaughan, D.E.W., Lussier, R.J. & Magee, S.L. Jr. (1979) Pillared interlayered clay materials useful as catalysts and sorbents. U.S. Patent no. 4 176090.Google Scholar
Vaughan, D.E.W., Lussier, R.J. & Magee, J.S. Jr. (1981) Stabilized pillared interlayered clays. US Patent no. 4248739.Google Scholar