Published online by Cambridge University Press: 09 July 2018
The pillaring of a Laponite by alumina pillars, iron pillars and mixed Al-Fe pillars was obtained by a simple in situ method starting from AlCl3 and/or FeCl3 solutions with different molar ratio Fe/(Fe + Al), and from NaOH solution added simultaneously to the clay suspension. The Al13 pillars were evidenced by XRD and NMR spectra. The density and the charge of these pillars were calculated from the chemical analysis. The Fe pillars (in samples with Fe content >26%) are larger than Al13 pillars and slowly reducible by hydrogen temperature programmed reduction (H2TPR), but we do not have any information on their structure. There is also an excess of non-pillar Fe retained by the pillared clays probably as oxyhydroxides. The isomorphic substitution in the mixed (Al-Fe)13 pillars (in samples with an Fe content >26%) was evidenced by H2TPR results compared to the chemical analyses and by the interpretation of the 27A1 peaks in the NMR spectra.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.