Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T00:37:49.420Z Has data issue: false hasContentIssue false

Palaeocene- early Eocene climatic evolution in the Tethyan realm: clay mineral evidence

Published online by Cambridge University Press:  09 July 2018

M.-P. Bolle
Affiliation:
Institut de Géologie, Emile Argand 11, Case postale 2, 2007 Neuchâtel, Switzerland
T. Adatte*
Affiliation:
Institut de Géologie, Emile Argand 11, Case postale 2, 2007 Neuchâtel, Switzerland
*

Abstract

Clay mineral associations of Palaeocene and Eocene age, with special attention to the late Palaeocene thermal maximum, have been examined in ten sections from the Tethys (Egypt, Israel, Tunisia, Spain and Kazakhstan) and Atlantic (England). A widespread abundance of kaolinite in marine sediments at all locations suggests a warm and humid climate with high rainfall in the Tethys region during the early Palaeocene. In the coastal basins along the southern margin (Israel and southern Tunisia), kaolinite disappears gradually giving way to palygorskite and sepiolite, suggesting the progressive development of arid climatic conditions in this part of the Tethys from the late Palaeocene to the early Eocene. Remarkably, kaolinite increases strongly throughout most of the Tethys during the late Palaeocene thermal maximum (LPTM) reflecting an episode of humidity and warmth and coincident with a global maximum warmth of seawaters inferred from oxygen isotopic data.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou-Ela, N.M. (1989) Lower Tertiary microflora from the Esna shale of the Red Sea coast, Egypt. Rev. Esp. Micropal. 21, 189–206.Google Scholar
Adatte, T. & Lu, G. (1995) Clay mineral correlation across the Paleocene-Eocene boundary: evidence for global turnover from western to eastern Tethys. GSA 1995, Ann. Meet. New Orleans, USA, Abstract p. 405.Google Scholar
Adatte, T., Stinnesbeck, W. & Keller, G. (1996) Lithostratigraphic and mineralogic correlations near the K/T boundary clastic sediments in northeastern Mexico: Implications for origin and nature of deposition. GSA, Spec. Pap. 307, 345–361.Google Scholar
Adatte, T., Bolle, M.P., de Kaenel, E., Gawenda, P., Winkler, W. & Von Salis, K. (2000) Climatic evolution from Paleocene to earliest Eocene inferred from clay mineral: a transect from northern Spain (Zumaia) to southern (Spain, Tunisia) and southeastern Tethys margins (Israel, Negev). Geologiska Förenings i Stockholm Förhandlingar, 112, 7–8.Google Scholar
Arkin, Y., Nathan, Y. & Starinsky, A. (1972) Paleocene- Eocene environments of deposition in the northern Negev (southern Israel). Geol. Surv. Isr., Bull. 56, 1–18.Google Scholar
Berggren, W., Kent, D., Swisher, C. & Aubry, M.-P. (1995) A revised Cenozoic geochronology and chrono stratigraphy. Pp . 129212 in : Geo chronology, Time Scale and Global Stratigraphy Correlation (Berggren, W., Kent, D., Aubry, M.P. & Hardenbol, J., editors). SEPM special publication.Google Scholar
Bolle, M.P. (1999) Climatic and environmental changes in the Tethys region during the late Paleocene thermal maximum. PhD thesis, Univ. Neuchâtel, Switzerland.Google Scholar
Bolle, M.P., Adatte, T., Keller, G., Von Salis, K. & Burns, S. (1999) The Paleocene-Eocene transition in the Southern Tethys (Tunisia): Climatic and environmental fluctuations. Bull. Soc. Géol. Fr. 170, 661–680.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer- Verlag, Berlin, Heidelberg.Google Scholar
Chamley, H. (1998) Clay mineral sedimentation in the Ocean. Pp. 269–302 in: Soils and Sediments (Mineralogy and Geochemistry) (Paquet, H. & Clauer, N., editors). Springer-Verlag, Berlin.Google Scholar
Charisi, S. & Schmitz, B. (1995) Stable (δ13C and δ18O) and strontium (87Sr/86Sr) isotopes through the Paleocene at Gebel Aweina, eastern Tethyan region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 116, 103–129.CrossRefGoogle Scholar
Collinson, M.E. (1999) Fruit and seed floras from Palaeocene/Eocene transitional strata in southern England and their palaeoenvironmental implications. Int. Early Paleogene Warm Climates and Biosphere Dynamics Meet. Göteborg, Sweden.Google Scholar
Estes, R. & Hutchison, J.H. (1980) Eocene lower vertebrates from Ellesmere Island, Canadian Arctic Archipe lago. Palaeoge ogr. Palaeoc limatol. Palaeoecol. 30, 325–347.Google Scholar
Gawenda, P., Winkler, W., Schmitz, B. & Adatte, T. (1999) Climate and bioproductivity control on carbonate turbidite sedimentation (Paleocene to earliest Eocene Gulf of Biscay, Zumaia). J. Sed. Res. 69, 1253–1261.Google Scholar
Gibson, T.G., Bybell, L.M. & Owens, J.P. (1993) Latest Paleocene lithologic and biotic events in neritic deposits of southwestern New Jersey. Paleoceanography 8, 495–514.Google Scholar
Gingerich, P. (1980) Evolutionary patterns in early Cenozoic mammals. Ann. Rev. of Earth Planet. Sci. 8, 407–424.Google Scholar
Godinot, M. (1999) Primate diversity during the Paleogene in Europe and its climatic implications. Int. Early Paleogene Warm Climates and Biosphere Dynamics Meet. Göteborg, Sweden.Google Scholar
Haq, B.U., Hardenbol, J. & Vail, P. (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of relative sea- level changes. Pp. 71–108 in. Sea-level Changes: An Integrated Approach (Wilgus, C., Hastings, B., Ross, C.A., Posamentier, H.W., Van Wagoner, J. & Kendall, C.G., editors). SEPM, Special Publication, 42.Google Scholar
Hendricks, F., Luger, P. & Strouhal, A. (1990) Early Tertiary Marine Palygor skite and Sepiolit e Neoformation in SE Egypt. Zeits. Deutsch. Geol. Ges. 141, 87–97.Google Scholar
Hillier, S. (1995) Erosion, sedimentation and sedimentary origin of clays. Pp. 162–219 in: Origin and Mineralogy of Clays, Clays and the Environment (Velde, B., editor). Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
Kaiho, K., Arinobu, T., Ishiwatari, R., Morgans, H.E.G, Okada, H., Takeda, N., Tazaki, K., Zhou, G., Kajiwara, Y., Matsumoto, R., Hirai, A., Niitsuma, N. & Wada, H. (1996) Latest Paleocene benthic foraminiferal extinction and environmental changes at Tawanui, New Zealand. Paleoceanography, 11, 447–465.Google Scholar
Karpoff, A.M., Lagabrielle, Y., Boillot, G. & Girardeau, J. (1989) L’authigenèse océanique de palygorskite par halmyrolyse de péridotites serpentinisées (marge de Galice): ses implications géodynamiques. C.R. Acad. Sci. Paris, 308, 647–654.Google Scholar
Keller, G., Adatte, T., Stinnesbeck, W., Stuben, D., Kramar, U., Berner, Z. & Von Salis, K. (1998) The Cretaceous- Tertiary transition on the shallow Saharan Platform of southern Tunisia. Geobios, 30, 951–975.Google Scholar
Kennett, J.P. & Stott, L.D. (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. Nature, 353, 225–229.Google Scholar
King, C. (1981) The Stratigraphy of the London Clay and Assoc iated Deposi ts. RC Rot terdam, The Netherlands.Google Scholar
Knox, R.W. (1996) Correlation of the early Paleogene in northwest Europe: an overview. Pp. 1–11 in. Correlation of the Early Pale ogene in Northwestern Europe (Knox, R.O., Corfield, R.M. & Dunay, R.E., editors). Spec. Publ. 101. Geological Society, London.Google Scholar
Kübler, B. (1987) Cristallinité de l’illite, méthodes normalisées de préparations, méthodes normalisées de mesures. Cahiers Inst. Géol. Neuch.Série ADX, 1–8.Google Scholar
Kübler, B., Pittion, J.C., Heriou, Y., Charollais, J. & Weidmann, M. (1979) Sur le pouvoir réflecteur de la vitrinite dans quelques roches du Jura, de la Molasse et des Nappes préalpines, helvétiques et penniques (Suisse occidentale et Haute-Savoie). Eclogae Geol. Helv. 72, 347–373.Google Scholar
Lu, G. & Keller, G. (1995) Planktic foraminiferal faunal turnovers in the subtropical Pacific during the late Paleocene to early Eocene. J. Foram. Res. 26, 97–116.Google Scholar
Lu, G., Adatte, T., Keller, G. & Ortiz, N. (1998) Abrupt climatic, oceanographic and ecologic changes near the Paleocene-Eocene transition in the deep Tethys basin: The Alamedilla section, southern Spain. Eclog. Geol. Helv. 91, 293–306.Google Scholar
Martini, E. (1971) Standard Tertiary and Quaternary calcareous nannoplankton zonation. Pp. 739–785 in: Proc. 2nd Planktonic Conferenc e Roma (Farinacci, A., editor). Tecnoscienza, Rome.Google Scholar
Millot, G. (1970) Geology of Clays. Springer-Verlag, New York.Google Scholar
Nadin, P.A. & Kusznir, N.J. (1996). Forward and reverse stratigraphic modelling of Cretaceous-Tertiary postrift subsidence and Paleogene uplift in the Outer Moray Firth Basin, central North Sea. Pp. 43–62 in: Correlation of the Early Paleogene in Northwestern Europe, (Knox, R.O., Corfield, R.M. & Dunay, R.E., editors). Spec. Publ. 101. Geological Society, London.Google Scholar
Oberhänsli, H. (1992) The influence of the Tethys on the bottom water of the early Tertiary ocean. Pp. 167–184 in. The Antarctic Paleoenvironment: A Perspective on Global Change (Kennett, J.P., editor). Antarctic Research, 4.Google Scholar
Pardo, A., Keller, G. & Oberhänsli, H. (1999) Paleoecologic and paleoceanographic evolution of the Tethyan realm during the Paleocene-Eocene transition. J. Foram. Res. 29, 37–57.Google Scholar
Pletsch, T. (1996) Palaeogeographic controls on palygorskite occurrence in mid-cretaceous sediments of Morocco and adjacent basins. Clay Miner. 31, 403–416.Google Scholar
Robert, C. (1982) Modalité de la sédimentation argileuse en relation avec l’histoire géologique de l’Atlantique Sud. PhD thesis, Univ. Aix-Marseille II, France.Google Scholar
Robert, C. & Chamley, H. (1991) Development of early Eocene warm climates, as inferred from clay mineral varations in oceanic sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 89, 315–332.Google Scholar
Robert, C. & Kennett, J.P. (1992) Paleocene and Eocene kaolinite distribution in the South Atlantic and Southern Ocean: Antarctic climatic and paleoceanographic implications. Marine Geol. 103, 99–110.Google Scholar
Robert, C. & Kennett, J.P. (1994) Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay mineral evidence. Geology, 22, 211–214.Google Scholar
Smith, A.G., Smith, D.G. & Funnell, B.M. (1994) Atlas of Mesozoic and Cenozoic Coastlines. Cambridge University Press, UK.Google Scholar
Strouhal, A. (1993) Tongeologische Entwicklungstrend in kretazi schen and tertiären Sedimenten Nordostafrik as: regional Falbeispiele. Berliner Geowiss. Abh. 155, 1–68.Google Scholar
Thiry, M. (1989) Geochemical evolution and paleoenvironments of the Eocene continental deposits in the Paris Basin. Palaeoge ogr. Palaeoc limatol. Palaeoecol. 70, 153–165.Google Scholar
Thomas, E. (1990) Late Cretaceous through Neogene deep-sea benthic foraminifers (Maud Rise, Weddell Sea, Antarctica ). Proc. ODP, Sci. Res. 113, 571–594.Google Scholar
Ward, D. (1978) The lower London Terti ary (Palaeocene) succession of Herne Bay, Kent. Inst. Geol. Sci. Rep. 78/10.Google Scholar
Weaver, C.E. (1989) Clays, Muds and Shales. Elsevier, The Netherlands.Google Scholar
Wolfe, J.A. (1980) Tertiary climates and floristic relationships at high latitudes in the northern hemisphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 30, 313–323.CrossRefGoogle Scholar
Zachos, J., Lohmann, K., Walker, J.C.G. & Wise, S.W. (1993) Abrupt climate change and transient climates during the Paleogene: A marine perspective. J. Geol. 101, 191–123.Google Scholar