Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T16:55:04.023Z Has data issue: false hasContentIssue false

Mineralogy, micromorphology, geochemistry and genesis of a hydrothermal kaolinite deposit and altered Miocene host volcanites in the Hallaçlar area, Uşak, western Turkey

Published online by Cambridge University Press:  09 July 2018

H. Erkoyun
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480 Eskişehir, Turkey
S. Kadіr*
Affiliation:
Eskişehir Osmangazi University, Department of Geological Engineering, TR-26480 Eskişehir, Turkey

Abstract

The Hallaçlar kaolinite deposit of the Uşak Province (western Turkey) is hosted by dacite, andesite and siliceous materials of the Miocene Karaboldere volcanites. Mineralogical zonation, such as the prevalence of kaolinite at the centre of the deposit, coexisting with silica polymorphs such as quartz and cristobalite along with feldspar and hornblende, and a relative increase of smectite, illite, chlorite, and Fe-oxide/-hydroxide phases outward and upward, demonstrate that hydrothermal-alteration processes resulted in kaolinization. Micromorphologically, kaolinite occurs as pseudohexagonal blocky kaolinite with coarse-grained quartz in microfractures, and the presence of relatively fine-grained vermiform kaolinite that edges volcanic materials indicates that kaolinite developed in several phases coexisting with goethite, lepidocrocite, hematite, pyrite, jarosite, alunite, and gypsum/anhydrite with smectite in fractures. The highly crystallized Hallaçlar kaolinite is identified by: (1) sharp reflections at 7.23 and 3.57 Å, with triplet and doublet non-basal reflections; (2) sharp infrared spectral bands at 3687, 3651 and 3620 cm-1; (3) well defined, pseudohexagonal and hexagonal kaolinite crystal growth; (4) a chemical index of weathering of 98.6-100; and (5) SiO2/Al2O3 ratios between 1.04 and 1.45. Enrichment of Sr and depletion of Rb+Ba, Ti, and HREE relative to LREE, with a distinct negative Eu anomaly, are responses to the fractionation of feldspar and hornblende by the hydrothermal fluid; these results are also supported by the O- and H-isotopic character and formation temperatures of the Hallaçlar kaolinite and smectite; namely, 134.1-183.4°C and 65.6°C, respectively. The negative δ34S (-20.7‰) value of gypsum/anhydrite reflects its formation from geothermal-water-derived sulphur. Under the influence of a tectonically controlled hydrothermal process, feldspar, hornblende and volcanic glass were altered, resulting in the conservation of Al and depletion of Si, Na, Ca, K, Mg and Fe in an open hydrological system such that formation of kaolinite in the central part of the deposit under acidic conditions and development of smectite and illite upward and outward under basic conditions were favoured.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arslan, M., Kadir, S., Abdioğlu, E. & Kolayli, H. (2006) Origin and formation of kaolin minerals in saprolite of Tertiary alkaline volcanic rocks, Eastern Pontides, NE Turkey. Clay Minerals, 41, 597617.CrossRefGoogle Scholar
Aydoğan, M.S. (2006) Baklan graniti (Muratdaği, Banaz/Uşak) civarindaki baz metal cevherlesmesinin mineral parajenezi, metal zonlanmasi ve kökenlerinin izotop jeokimyasi He saptanmasi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 238 pp.Google Scholar
Başari, N. (1982) Uşak, Banaz, Kizilcaoren Koyii Demir—Manganez Cevrelesmesi Jeoloji Raporu. MTA Report No. 7182.Google Scholar
Bethke, P.M., Rye, R.O., Stoffregen, R.E. & Vikre, P.G. (2005) Evolution of the magmatic-hydrothermal acid-sulfate system at Summitville, Colorado: integration of geological, stable-isotope, and fluidinclusion evidence. Chemical Geology, 215, 281315.CrossRefGoogle Scholar
Bingöl, E. (1977) Muratdagi jeolojisi ve ana kayac birimlerinin petrolojisi. Türkiye Jeoloji Kurumu Bulteni, 20, 1366.Google Scholar
Bobos, L, Duplay, J., Rocha L & Gomes, C. (2001) Kaolinite to halloysite-7A transformation in the kaolin deposit of Sao Vicente de Pereira, Portugal. Clays and Clay Minerals, 49, 596607.CrossRefGoogle Scholar
Boulvais, P., Vallet, J.M., Esteoule-Coux, J., Fourcade, S. & Martineau, F. (2000) Origin of kaolinization in Brittany (NW France) with emphasis on deposits over granite: stable isotopes (O,H) constraints. Chemical Geology, 168, 211223.CrossRefGoogle Scholar
Boynton, W.V. (1984) Cosmochemistry of the rare earth elements: meteorite studies. Pp. 63114 in: Rare Earth Element Geochemistr. (P. Henderson, editor), Elsevier, Amsterdam.CrossRefGoogle Scholar
Brindley, G.W. (1980) Quantitative X-ray analysis of clays. Pp. 411438 in: Crystal Structures of Clay Minerals and their X-ray Identificatio. (G.W. Brindley & G. Brown, editors). Mineralogical Society Monograph 5, London.CrossRefGoogle Scholar
Burkay, I. & Demirhan, M. (1988) Usak - Banaz - Muratdagi Baklantepe ve Bahadir Koyii Kuzeyi Sahalan Kursun-Cinko-Bakir Aramalan Induklem Polarizasyon Etu'dii. MTA Report No. 8530.Google Scholar
Campbell, A.C., Palmer, M.R., Klinkhammer, G.P., Bowers, T.S., Edmond, J.M., Lawrence, J.R., Casey, J.F, Thompson, G., Humphris, S., Rona, P. & Karson, J.A. (1988) Chemistry of hot springs on the Mid- Atlantic ridge. Nature, 335, 514519.CrossRefGoogle Scholar
Chamley, H. (1989) Clay Sedimentology. Springer Verlag, New York, 623 pp.CrossRefGoogle Scholar
Chen, Y.C., Wang, M.K. & Yang, D.S. (2001) Mineralogy of dickite and nacrite from northern Taiwan. Clays and Clay Minerals, 49, 586595.CrossRefGoogle Scholar
Christidis, G., Scott, P.W. & Marcopoulast, T. (1995) Origin of the bentonite deposits of Eastern Milos and Kimalos, Greece: geological, mineralogical and geochemical evidence. Clays and Clay Minerals, 43, 6377.CrossRefGoogle Scholar
Clayton, R.N. & Mayeda, T.K. (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Ada, 27, 4352.CrossRefGoogle Scholar
Davraz, A. (2008) Hydrogeochemical and hydrogeological investigations of thermal waters in the Us.ak Area (Turkey). Environmental Geology, 54, 615628.CrossRefGoogle Scholar
Dill, H.G., Bosse, H.R., Henning, K.H., Fricke, A. & Ahrendt, H. (1997) Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt of the Central Andes of northwestern Peru. Mineralium Deposita, 32,149-163.CrossRefGoogle Scholar
Ece, O.I. & Schroeder, P.A. (2007) Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balikesir, Turkey. Clays and Clay Minerals, 55, 1835.CrossRefGoogle Scholar
Ece, Ö.I., Schroeder, P.A., Smilley, M. & Wampler, M. (2008) Acid-sulfate alteration of volcanic rocks and genesis of halloysite and alunite deposits in the Biga Peninsula, NW Turkey. Clay Minerals, 43, 281315.CrossRefGoogle Scholar
Ercan, T., Dinçel, A., Günay, E. & Türkecan, A. (1977) Usak yoresinin jeolojisi ve volkanitlerin petrolojisi. MTA Report No. 6354.Google Scholar
Ercan, E., Dinçel, A., Metin, S., Türkecan, A. & Günay, A. (1978) Us.ak yoresindeki Neojen havzalarmm jeolojisi (Geology of the Neogene basins in Us.ak region). Bulletin of the Geological Society of Turkey, 21, 97106.Google Scholar
Ercan, T., Dinçel, A. & Günay, E. (1979) Usak volkanitlerinin petrolojisi ve plaka tektonigi acismdan Ege bolgesindeki yeri. Turkiye Jeoloji Kurumu Bulteni, 11, 185-198.Google Scholar
Erhenberg, S.N. (1991) Kaolinized, potassium-leached zones at the contacts of the Garn Formation, Haltenbanken, mid-Norwegian continental shelf. Marine and Petroleum Geology, 8, 250269.CrossRefGoogle Scholar
Farmer, V.C. (1974) Layer silicates. Pp. 331-363 in: Infrared Spectra of Mineral. (V.C. Farmer, editor). Mineralogical Society Monograph 4, London.CrossRefGoogle Scholar
Faure, G. (1986) Principles of Isotope Geology, 2nd edition, John Wiley and Sons, New York, 589 pp.Google Scholar
Fialips, G.C. (1999) Etude experimental de la cristallinite et des conditions de formation de la kaolinite. These Doct, Univ. Poitiers, France.Google Scholar
Fujii, N., Kayabah, I. & Saka, A.H. (1995) Data Book of Ceramic Raw Materials of Selected Areas in Turkey. Monography Series No.l, General Directorate of Mineral Research and Exploration. 144 pp.Google Scholar
Fulignati, P., Gioncada, A. & Sbrana, A. (1999) Rare earth element (REE) behaviour in alteration facies of the active magmatic—hydrothermal system of Volcano (Aeolin Island, Italy). Journal of Volcanology and Geothermal Research, 88, 325342.CrossRefGoogle Scholar
Gibson, H.L., Watkinson, D.H. & Comba, C.D.A. (1983) Silicification: Hydrothermal alteration in an Archean geothermal system within the Amulet Rhyolite Formation, Noranda, Quebec. Economic Geology, 78, 954971.CrossRefGoogle Scholar
Giese, R.F. Jr. (1988) Kaolin minerals: Structures and stabilities. Pp. 2966 in: Hydrous Phyllosilicates (Exclusive of Micas. (S.W. Bailey, editor). Reviews in Mineralogy,19. Mineralogical Society of America.CrossRefGoogle Scholar
Gilg, H.A., Hiilmeyer, S., Miller, H. & Sheppard, S.M.F. (1999) Supergene origin of the Lastarria kaolin deposit, South-Central Chile, and paleoclimatic implications. Clays and Clay Minerals, 47, 201212.CrossRefGoogle Scholar
Gilg, H.A., Weber, B., Kasbohm, J. & Frei, R. (2003) Isotope geochemistry and origin of illite-smectite and kaolinite from the Seilitz and Kemmlitz kaolin deposits, Saxony, Germany. Clay Minerals, 38, 95112.CrossRefGoogle Scholar
Gonca, Ş., Karul, B. & Dilek, S. (1986) Orta Anadolu Polimetal Aramalan Muratdagi Genel Jeokimya Prospeksiyon Reporu. MTA Report No. 8061.Google Scholar
Inoue, A. (1995) Formation of clay minerals in hydrothermal environments. Pp. 268329 in: Origin and Mineralogy of Clays, Clays and the Environmen. (B. Velde, editor), Springer-Verlag Berlin.CrossRefGoogle Scholar
Jansen, B., Nierop, K.G.J. & Verstraten, J.M. (2003) Mobility of Fe(II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios. Geoderma, 113, 323340.CrossRefGoogle Scholar
Juteau, T., Bingöl, F., Noack, Y. & Whitechurch, H. (1978) 38. preliminary results: mineralogy and geochemistry of alteration products in leg 45 basement samples. Initial Reports of the Deep Sea Drilling Project, 45, 613645, Washington.Google Scholar
Kadir, S. & Akbulut, A. (2009) Mineralogy, geochemistry and genesis of the Tagoluk kaolinite deposits in pre- Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey. Clay Minerals, 44, 89112.CrossRefGoogle Scholar
Kadir, S. & Karakas, Z. (2002) Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbrites, Konya, Turkey. Neues Jahrbuch fur Mineralogie, Abhandlungen, 177, 113132.CrossRefGoogle Scholar
Kadir, S. & Kart, F. (2009) Occurrence and origin of the Sogiit kaolinite deposits in the Paleozoic Saricakaya granite-granodiorite complexes and overlying Neogene sediments (Bilecik, Northwestern Turkey). Clays and Clay Minerals, 57, 311329.CrossRefGoogle Scholar
Kadir, S., Önen-Hall, P., Aydin, S.N., Yakicier C, Akarsu, N. & Tuncer, M. (2008) Environmental effect and genetic influence: a regional cancer predisposition survey in the Zonguldak region of Northwest Turkey. Environmental Geology, 54, 391409.CrossRefGoogle Scholar
Kämpf, N., Scheinost, A.C. & Schulze, D.G. (2000) Oxide minerals. Pp. 125168 in: Handbook of Soil Scienc. (M.E. Sumner, editor). Boca Raton, Florida, USA.Google Scholar
Karaağaç, Ç., Akkaya, Z., Türk, Y. & Gültekin, A. (1975) Usak-Esme-Gediz-Muratdagi-Dumlupinar-Banaz-Sivash-Ulubey dolaylannin seramik hammaddeleri on incelemesi. MTA Report No. 5506.Google Scholar
Karakaya, N. (2009) REE and HFS element behaviour in the alteration facies of the Erenler Dagi Volcanics (Konya, Turkey) and kaolinite occurrence. Journal of Geochemical Exploration, 101, 185208.CrossRefGoogle Scholar
Keller, W.D. (1978) Scan electron micrographs of the kaolinization process including examples from the Bohmian Massif. Schriftenreihe fuer Geologische Wissenschaften, 11, 89108.Google Scholar
Konak, N. (2007) 1/500,000 Scale Geological Map of Turkey—Izmir, General Directorate of Mineral Research and Exploration of Turkey.Google Scholar
Lavery, N.G. (1985) Quantifying chemical changes in hydrothermally altered volcanic sequences—silica enrichment as a guide to the Crandon massive sulfide deposit, Wisconsin, USA. Journal of Geochemical Exploration, 24, 1 -27.CrossRefGoogle Scholar
Lueth, V.W., Rye, R.O. & Peters, L. (2005) “Sour gas” hydrothermal jarosite: ancient to modern acidsulphate mineralization in the southern Rio Grande Rift. Chemical Geology, 215, 339360.CrossRefGoogle Scholar
MacKenzie, R.C. (1957) The Differential Thermal Investigation of Clays. Mineralogical Society, London, 456 pp.Google Scholar
MacLean, W.H. & Kranidiotis, P. (1987) Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposits, Matagami, Quebec. Economic Geology, 2, 951-962.Google Scholar
Madejová, P., Komadel, P. & Číčel, B. (1992) Infrared spectra of some Czech and Slovak smectites and their correlation with structural formulas. Geologica Carpathica Clays, 1, 912.Google Scholar
Marumo, K. (1989) Genesis of kaolin minerals and pyrophyllite in Kuroko deposits of Japan: Implications for the origin of the hydrothermal fluids from mineralogical and stable isotope data. Geochimica et Cosmochimica Ada, 53, 29152924.CrossRefGoogle Scholar
Meunier, A. (2005) Clays. Springer-Verlag, Berlin, Heidelberg, 472 pp.Google Scholar
Meunier, A. & Velde, B. (2004) Elite, Origin, Evolution and Metamorphism. Springer-Verlag, Berlin, Heidelberg, New York, 286 pp.Google Scholar
Meyer, C. & Hemley JJ. (1967) Wall rock alteration. Pp. 166235 in: Geochemistry of Hydrothermal Ore Deposit. (H.L. Barnes, editor) Holt, Rinehart and Winston, New York.Google Scholar
Mongelli, G. (1997) Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy). Chemical Geology, 140, 6979.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 332 pp.Google Scholar
Nagasawa, K. (1978) Kaolin minerals. Pp. 189-219 in: Clays and Clay Minerals of Japa. (T. Sudo & S. Shimoda, editors). Developments in Sedimentology, 26, Elsevier, Tokyo.Google Scholar
Nesbitt, H.W. & Markovics, G. (1997) Weathering of grandioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Ada, 61, 16531670.CrossRefGoogle Scholar
Nesbitt, H.W. & Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 279, 715717.CrossRefGoogle Scholar
Nesbitt, H.W. & Young, G.M. (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Ada, 48, 15231534.CrossRefGoogle Scholar
Özgür, N. (2003) Active and fossil geothermal systems in the continental rift zones of the Menderes Massif, Western Anatolia, Turkey. Pp. 515518 in: Mineral Exploration and Sustainable Developmen. (D.G. Eliopoulos et al., editors). Millpress Science Publishers.Google Scholar
Paterson, E. & Swaffield, R. (1987) Thermal analysis. Pp. 99132 in: A Handbook of Determination Methods in Clay Mineralog. (MJ. Wilson, editor). Blackie and Sons Limited, Chapman and Hall, New York, 308 pp.Google Scholar
Rollinson, H.R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. John Wiley and Sons Inc., New York, 352 pp.Google Scholar
Savin, S.M. & Epstein, S. (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochimica et Cosmochimica Ada, 34, 2542.CrossRefGoogle Scholar
Savin, S.M. & Lee, M. (1988) Isotopic studies of phyllosilicates. Pp. 189-223 in. Hydrous Phyllosilicates (Exclusive of Micas. (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington DC.Google Scholar
Saym, S.A. (2007) Origin of kaolin deposits: evidence from the Hisarcik (Emet-Kiitahya) deposits, western Turkey. Turkish Journal of Earth Sciences, 16, 7796.Google Scholar
Schwertmann, U. (1993) Relation between iron oxides, soil color, and soil formation. Pp. 5169 in: Soil Colo. (J.M. Bigham & E.J. Ciolkosz, editors). Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Şener, M. & Gevrek, A.İ (2000) Distribution and significance of hydrothermal alteration minerals in the Tuzla hydrothermal system, Canakkale, Turkey. Journal of Volcanology and Geothermal Research, 96, 215228.CrossRefGoogle Scholar
Seyhan, I. (1978) Türkiye kaolen yataklan ve hidrotermal cevherler arasmda goriilen iligkiler. Jeoloji Muhendigi Dergisi, 4, 2731.Google Scholar
Seyitoğlu, G., Anderson, D., Nowel, G. & Scott, B.C. (1997) The evolution from Miocene potassic to Quaternary sodic magmatism in Western Turkey: implication for enrichment processes in the lithospheric mantle. Journal of Volcanology and Geothermal Research, 76, 127147.CrossRefGoogle Scholar
Sheppard, S.M.F. (1986) Characterization and isotopic variations in natural waters. Pp. 165183 in: Stable Isotopes in High Temperature Geological Processe. (J.W. Valley, H.P. Taylor, & J.R. O'Neil, editors). Reviews in Mineralogy, 16. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Sheppard, S.M.F. & Gilg, H.A. (1996) Stable isotope geochemisty of clay minerals. Clay Minerals, 31, 124.CrossRefGoogle Scholar
Sheppard, S.M.F., Nielsen, R.L. & Taylor, H.P. (1969) Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Economic Geology, 64, 755777.CrossRefGoogle Scholar
Siddiqui, M.A. & Ahmed, Z. (2008) Geochemistry of the kaolin deposits of Swat (Pakistan). Chemie der Eder Geochemistry, 68, 207219.CrossRefGoogle Scholar
Simeone, R., Dilles, J.H., Padalino, G. & Palomba, M. (2005) Mineralogical and stable isotope studies of kaolin deposits: Shallow epithermal systems of western Sardinia, Italy. Economic Geology, 100, 115130.CrossRefGoogle Scholar
Sousa, D.J.L., Varajao, A.F.D.C, Yvon I & Da Costa, G.M. (2007) Mineralogical, micromorphological and geochemical evolution of the kaolin facies deposit from the Capim region (northern Brazil). Clay Minerals, 42, 6987.CrossRefGoogle Scholar
Szynkiewicz, A., Ewing, R.C., Moore, C.H. & Glamoclija, M. (2010) Origin of terrestrial gypsum dunes—Implications for Martian gypsum-rich dunes of Olympia Undae. Geomorphology, 121, 6983.CrossRefGoogle Scholar
Taylor, H.P. (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69, 843883.CrossRefGoogle Scholar
Taylor, H.P. (1979) Oxygen and hydrogen relationships in hydrothermal mineral deposits. Pp. 236277 in: Geochemistry of Hydrothermal Ore Deposit. (H.L. Barnes, editor). 2nd edition. John Wiley, New York.Google Scholar
Türk, Y. (1976) Usakta karofeyans hammaddesi arastirmalan on etu'd raporu. MTA Report No. 3177.Google Scholar
Ueda, A. & Krouse, H.R. (1986) Direct conversion of sulphide and sulphate minerals to SO2 for isotope analysis. Geochemical Journal, 20, 209212.CrossRefGoogle Scholar
Van der Marel, H.W. & Beutelspacher, H. (1976) Atlas of IR Spectroscopy of Clay Minerals and their Admixtures. Elsevier, Amsterdam. 396 pp.Google Scholar
Weaver, C.E. (1989) Clays, Muds, and Shales. Developments in Sedimentology, 44, Elsevier, Amsterdam, 819 pp.Google Scholar
Wilson, MJ. (1987) X-ray powder diffraction methods. Pp. 2698 in: A Handbook of Determinative Methods in Clay Mineralog. (MJ. Wilson, editor). Blackie, Glasgow and London.Google Scholar
Winchester, J.A. & Floyd, P.A. (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 245252.CrossRefGoogle Scholar
Yeh, H.W. (1974) Oxygen isotope studies of ocean sediments during sedimentation and diagenesis. Ph.D. Thesis, Case Western Reserve University, Cleveland, Ohio, 136 pp.Google Scholar
Yeh, H.W. & Savin, S.M. (1977) Mechanism of burial metamorphism of argillaceous sediments: 3. O-isotope evidence. Geological Society of America Bulletin, 88, 13211330.2.0.CO;2>CrossRefGoogle Scholar
Yiğit, O. (2006) Gold in Turkey—a missing link in Tethyan metallogeny. Ore Geology Reviews, 28, 147179.CrossRefGoogle Scholar
Yilmaz, Y. (1989) An approach to the origin of young volcanic rocks of western Turkey. Pp. 159183 in: Tectonic Evolution of the Tethyan regio. (A.M.C. Sengor, editor). Kluwer Academic Publisher.CrossRefGoogle Scholar