Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T12:57:37.625Z Has data issue: false hasContentIssue false

Local Structure of Ferrihydrite and Feroxyhite by Exafs Spectroscopy

Published online by Cambridge University Press:  09 July 2018

A. Manceau
Affiliation:
LGIT, Université Joseph Fourier, BP53X, 38041 Grenoble, France
V. A. Drits
Affiliation:
Geological Institute of the Russian Academy of Science, 7 Pyzhevsky prospekt, 109017 Moscow, Russia

Abstract

Synthetic 2-line and 6-line ferrihydrite and feroxyhite samples prepared from ferric salt solutions have been investigated by EXAFS spectroscopy. All these materials have been found to be short-range ordered, consisting of Fe octahedra linked by comers, edges, and faces. Their local structures are related to those of well-crystallized (oxyhydr)oxides, and the absence of hkl reflections in some samples is attributed to the small size of coherent scattering domains. The presence of face sharings indicates that these materials have structural similarities with hematite. Based on Fe-Fe distances and the analysis of the static disorder, it has been concluded that the local structure of feroxyhite is close to that of hematite, whereas ferrihydrite has common structural features with both hematite (αFe203) and cdβFeOOFI. The local structure of ferrihydrite thus differs from that of aqueous Fe polymers obtained by the partial hydrolysis of ferric nitrate and chloride solutions. Differences of local structures among hydrous Fe oxides and aqueous polymers have been interpreted on the basis of a room temperature stability phase diagram established for well-crystallized (oxyhydr)oxides.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, R.J., Posner, A.M. & Quirk, J.P. (1968) Crystal nucleation in Fe(III) solutions and hydroxide gels. J. Inorg. Nucl. Chem. 30, 23712381.CrossRefGoogle Scholar
Atkinson, R.J., Posner, A.M. & Quirk, J.P. (1977) Crystal nucleation and growth in hydrolysing iron(III) chloride solutions. Clays Clay Miner. 25, 4956.CrossRefGoogle Scholar
Bernal, J.D., Dasgupta, D.R. & Mackay A .L . (1959) The oxides and hydroxides of iron and their structural inter­relationships. Clay Miner. Bull. 4, 1530.Google Scholar
Blake, R.L., Hessevick, R.E., Zoltai, T. & Finger, L. (1966) Refinement of the hematite structure. Am. Miner. 51, 123129.Google Scholar
Bonnin, D., Čalas, G., Suquet, H. & Pezerat, H. (1985) Site occupancy of Fe3+ in Garfield nontronite: a spectroscopic study. Phys. Chem. Miner. 12, 5564.Google Scholar
Bottero, J.Y., Manceau, A., Villieras, F. & Tchoubar, D. (1993) Structure and mechanism of nucleation of FeOOH(Cl) polymers. Langmuir (submitted).Google Scholar
Cardile, C.M. (1988) Tetrahedral Fe3+ in ferrihydrite: 57Fe Mossbauer spectroscopic evidence. Clays Clay Miner. 36, 537539.Google Scholar
Carlson, L. & Schwertmann, U. (1980) Natural occurrence of feroxyhite (d'FeOOH). Clays Clay Miner. 28, 272280.Google Scholar
Carlson, L. & Schwertmann, U. (1981) Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta 45, 421129.Google Scholar
Chukhrov, F.V. (1973) On mineralogical and geochemical criteria in the genesis of red beds. Chem. Geol. 12,6775.CrossRefGoogle Scholar
Chukhrov, F.V., Zvyagin, B.B., Ermilova, L.P. & Gorshkov, A.I. (1972) New data on iron oxides in the weathering zone. Proc. Int. Clay Conf. Madrid, 333341.Google Scholar
Chukhrov, F.V., Zvyagin, B.B., Ermilova, L.P. & Gorshkov, A.I. (1974) Über die natur der eisenoxide in geologisch jungen bildungen. Chem. Erde33, 109124.Google Scholar
Chukhrov, F.V., Zvyagin, B.B., Gorshkov, A.I., Yermilova, L.P. & Balashova, V.V. (1973) Ferrihydrite. Izvestiya Akad. Nauk. SSSR, Ser. Geol. 4, 2333. (Transi, in Int. Geol. Rev., 16, 11311143.Google Scholar
Chukhrov, F.V., Manceau, A., Sakharov, B.A., Combes, J.M., Gorshkov, A.I., Salyn, A.L. & Drits, V.A. (1988) Crystal chemistry of oceanic ferric vernadites. Mineralogicheskii J. 10, 7892.Google Scholar
Chukhrov, F.V., Zvyagin, B.B., Gorshkov, A.I., Yermilova, L.P., Korovushkin, V.V., Rudnitskaya, Y.S. & Yakubovskaya, N.Yu. (1976) Feroksigit-novaya modifikatiya FeOOH (Feroxyhite, a new modification of FeOOH). AN SSSR Izvestiya, ser. Geol. 5-24. (Trans. Int. Geol. Rev. 19, 873890.Google Scholar
Combes, J.M., Manceau, A. & Čalas, G. (1986) Study of the local structure in poorly-ordered precursors of iron oxihydroxides. J. Physique C8, 697701.Google Scholar
Combes, J.M., Manceau, A. & Čalas, G. (1990) Formation of ferric oxides from aqueous solutions: a polyhedral approach by X-ray absorption spectroscopy. II. Hematite formation from ferric gels. Geochim. Cosmochim. Acta 54, 10831091.Google Scholar
Combes, J.M., Manceau, A., Čalas, G. & B otteroJ.Y . (1989) Formation of ferric oxides from aqueous solutions: a polyhedral approach by X-ray absorption spectroscopy. I. Hydrolysis and formation of ferric gels. Geochim. Cosmochim. Acta 53, 583594.Google Scholar
Cornell, R.M. & Giovanoli, R. (1990) Transformation of akaganeite into goethite and hematite in alkaline media. Clays Clay Miner. 38, 469176.CrossRefGoogle Scholar
Drits, V.A., Sakharov, B.A. & Manceau, A. (1992a) Structure of feroxyhite as determined by simulation of X-ray diffraction curves. Clay Miner. 28, 209222.Google Scholar
Drits, V.A., Sakharov, B.A., Salyn, A.L. & Manceau, A. (1992b) Structural model for ferrihydrite. Clay Miner. 28, 185207.Google Scholar
Eggleton, R.A. & Fitzpatrick, R.W. (1988) New data and a revised structural model for ferrihydrite. Clays Clay Miner. 36, 111124.Google Scholar
Feitknecht, W. & Michaelis, W. (1962) Ūber die Hydrolyse von Eisen(III)-perchlorat-Loseungen. Helv. Chim. Acta 26, 212224.Google Scholar
Feitknecht, W., Giovanoli, R., Michaelis, W. & Muller, M. (1973) Die Hydrolyse der Losungen von Eisen (III)- chlorid. Helv. Chim. Acta 56, 28472856.Google Scholar
Fischer, W.R. & Schwertmann, U. (1975) The formation of hematite from amorphous iron(III) hydroxide. Clays Clay Miner. 23, 3337.CrossRefGoogle Scholar
Hazemann, J.L., Manceau, A., Sainctavit Ph . & Malgrange, C. (1992) Structure of the αFexAli1-xOOH solid solution. I. Evidence by polarized EXAFS for an epitaxial growth of hematite-like clusters in diaspore. Phys. Chem. Miner. 19, 2538.Google Scholar
Jenne, E.A. (1968) Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. Adv. Chem. Ser. 73, 337387.Google Scholar
Manceau, A. & Combes, J.M. (1988) Structure of Mn and Fe oxides and oxyhydroxides: a topological approach by EXAFS. Phys. Chem. Miner. 15, 283295.Google Scholar
Manceau, A., Combes, J.M. & Čalas, G. (1990) New data and a revised model for ferrihydrite: a comment on a paper by R.A. Eggleton and R.W. Fitzpatrick. Clays Clay Miner. 38, 331334.CrossRefGoogle Scholar
Manceau, A., Gorshkov, A.I. & Drits, V.A. (1992a) Structural chemistry of Mn, Fe, Co, and Ni in Mn hydrous oxides. II. Information from EXAFS spectroscopy, electron and X-ray diffraction. Am. Miner. 77 ,11441157.Google Scholar
Manceau, A., Gorshkov, A.I. & Drits, V.A. (1992b) Structural Chemistry of Mn, Fe, Co, and Ni in Mn hydrous oxides. I. Information from XANES spectroscopy. Am. Miner. 77, 11331143.Google Scholar
McKale, A.G., Veal, B.W., Paulikas, A.P., Chan, S.K. & Knapp, G.S. (1988) Improved ab initio calculations of amplitude and phase functions for extended X-ray absorption fine structure spectroscopy. J. Am. Chem. Soc. 110, 37633768.CrossRefGoogle Scholar
Okamoto, S. (1968) Structure of <5-FeOOH. J. Am. Ceram. Soc. 51, 594599.CrossRefGoogle Scholar
Oles, A., Szytula, A. & Wanic, A. (1970) Neutron diffraction study of yFeOOH. Phys. Status Solidi 41, 173177.CrossRefGoogle Scholar
Paterson, E. & Tait, J.M. Nitrogen adsorption on synthetic akaganeite and its structural implications. Clay Miner. 12, 345350.Google Scholar
Patrat, G., De Bergevin, F., Pernet, M. & Joubert, J.C. (1983) Structure locale de AFeOOH. Acta Cryst.B39, 165170.Google Scholar
Post, J.E. & Buchwald, V.F. (1991) Crystal structure refinement of akaganeite. Am. Miner. 76, 272277.Google Scholar
Russell, J.D. (1979) Infrared spectroscopy of ferrihydrite: evidence for the presence of structural hydroxyl groups. Clay Miner. 14, 109114.Google Scholar
Sainctavit, Ph., Petiau, J., Manceau, A., Rivallant, R., Belakhovsky, M. & Renaud, G. (1988) A two-mirror device for higher harmonic rejection. Nuclear Instruments Methods 273, 423128.CrossRefGoogle Scholar
Schneider, W. (1984) Flydrolysis of iron(III) - chaotic olation versus nucleation. Comments Inorg. Chem. 3, 205223.Google Scholar
Schwertmann, U. (1988) Occurrence and formation of iron oxides in various pedoenvironments, Pp. 267-308 in: Iron in Soils and Clays Minerals (J.W. Stucki, B.A. Goodman & U. Schwertmann, editors). NATO asi Series, 217.Google Scholar
Schwertmann, U. & Fischer, W. (1966) Zur Bildung von αFeOOH und β-Fe2O3 aus amorphem Eisen(III) hydroxid. Z. Anorg. Allg. Chem. 346, 137142.Google Scholar
Schwertmann, U. & Fischer, W.R. (1973) Natural “amorphous” ferric hydroxide. Geoderma 10, 237247.CrossRefGoogle Scholar
Schwertmann, U. & Murad, E. (1983) The effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner. 31, 277284.CrossRefGoogle Scholar
Szytula, A., Burewicz, A., Dimitrijevic, Z., Krasnicki, S., Rzany, H.,Todorovic, J., Wanic, A. & Wolski, W. (1968) Neutron diffraction studies of oFeOOH. Phys. Status Solidi 26, 429434.Google Scholar
Teo, B.K. (1986) EXAFS: Basic Principles and Data Analysis. Inorganic Chemistry Concepts 9. Springer-Verlag.Google Scholar
Towe, K.M. & Bradley, W.F. (1967) Mineralogical constitution of colloidal “hydrous ferric oxides”. J. Coll. Interf. Sci. 24, 384392.Google Scholar
Van der Giessen, A. A. (1966) The structure of iron(III) oxide-hydrate gels. J. Inorg. Nucl. Chem. 28, 21552159.Google Scholar