Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T02:31:10.933Z Has data issue: false hasContentIssue false

L'‘halloysite’ blanche riche en fer de vate (vanuatu)—hypothese d'un edifice interstratifie halloysite-hisingerit

Published online by Cambridge University Press:  09 July 2018

P. Quantin
Affiliation:
ORSTOM, Services Scientifiques Centraux, 70-74 route d'Aulnay, F-93140 Bondy, France
A. J. Herbillon
Affiliation:
Section de Physico-chimie Minérale du Musée Royal de l'Afrique Centrale et Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgique
C. Janot
Affiliation:
Institut Max von Laue-Paul Langevin, Grenoble, France
G. Siefferman
Affiliation:
ORSTOM, Services Scientifiques Centraux, 70-74 route d'Aulnay, F-93140 Bondy, France

Resume

L'argile blanche en provenance du sol ferrallitique dérivé de matériaux pyroclastiques de Vaté (Vanuatu) possède un rapport moléculaire SiO2/(Al2O3 + Fe2O3) proche de 2, est riche en fer (∼7% Fe2O3) et se présente sous forme de fines lamelles irrégulières et parfois froissées. Sous l'effet de tout traitement de déshydratation, l'espacement basal de cette argile passe progressivement de 10 Å vers 7 Å. Toutes ces caractéristiques permettraient son identification comme halloysite (10 Å) ferrifère hydratée. Cependant, les spectres de diffraction des rayons X de cette argile déshydratée puis déshydroxylée ne correspondent pas à ceux que l'on obtient pour une halloysite ‘normale’. Ils révèlent plutôt la présence d'un édifice interstratifié 1:1/2:1 où le minéral 2:1, présent à raison de 20% environ, est dioctaédrique. En outre, la CEC de ce matériau (∼44 mEq/100 g à pH 4) est anormalement élevée pour un minéral 1:1. Par spectroscopie Mössbauer, on établit que la quasi-totalité du fer présent dans cet échantillon doit être localisée en position octaédrique au sein d'un phyllosilicate. Comme ce fer est ferrique, son inclusion dans la couche octaédrique d'un minéral 1:1 ne pourrait justifier l'importante charge négative permanente que porte cette argile. En réalité, toutes les propriétés reconnues pour ce matériau justifient son identification comme minéral interstratififé de 80% environ d'halloysite et de 20% de smectite ferrifère. Certaines particularités des spectres d'infrarouge, notamment l'absence des bandes à 3560 et 820 cm−1 caractéristiques des vibrations d'élongation et de déformation des hydroxyles de la nontronite, suggèrent que la smectite ferrifère inclue dans l'édifice interstratifié pourrait être une hisingérite dioctaédrique.

Abstract

Abstract

The white clay mineral described here was found in the bottom horizon of a ferrallitic soil derived from pyroclastic rocks in Forari, New Hebrides. It showed an SiO2/(Al2O3 + Fe2O3) molecular ratio close to two, was iron-rich (∼7% Fe2O3) and formed thin, irregular and sometimes crumpled lamellae. On drying, the basal spacing shifts progressively from 10 to 7 Å. The above properties would thus identify it as a hydrated (10 Å) ‘iron-rich’ or ‘ferrihalloysite’. However, the X-ray diffraction patterns of the clay subjected to either severe dehydration or dehydroxylation treatments did not correspond exactly to those for ‘normal’ halloysites. Rather, they revealed the presence of an interstratified mineral, where the 2:1 component was dioctahedral and accounted for ∼20% of the total sample. Further the CEC of this clay was abnormally high (∼44 mEq/100 g at pH 4) for a 1:1 phyllosilicate. Mössbauer spectroscopy showed that most of the iron present was localized in the octahedral sites of a clay mineral framework and that this iron was exclusively ferric. Its assignment, therefore, to the octahedral sheet of a 1 : 1 clay mineral did not account for the important negative charge shown by this material. All the properties listed indicate that it is a mixed-layer clay composed of halloysite (∼80%) and iron-rich smectite (∼20%) components. Some peculiarities observed in the IR spectra, namely the absence of the 3560 and 820 cm−1 OH stretching and bending vibration bands characteristic of a nontronite, suggest that the iron-rich smectite present in the interstratified clay could be a dioctahedral hisingerite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Anton, R. & Rouxhet, P.G. (1977) Note on the intercalation of kaolinite dickite and haUoysite by dimethyl-sulfoxide. Clays Clay Miner. 25, 259263.CrossRefGoogle Scholar
Bonatti, S. & Galitelli, P. (1950) Metahalloysite-Fe farine fossili di Bagnoregio (Viterbo). Atti Soc. Toscana Sci. Nat. Sér. A, 57100.Google Scholar
Brigatti, M.F. (1982) Hisingerite: a review of its crystal chemistry. Proc. Int. Clay Conf. Bologna and Pavia 1981, 97110.Google Scholar
Coey, J.M.D. (1980) Clay minerals and their transformations studied with nuclear techniques. Atomic Energy Review 18, 73124.Google Scholar
CPCS (1967) Classification des Sols. Note ENSA Grignon, France, 67 pp.Google Scholar
Cradwick, P.D. & Wilson, M.J. (1972) Calculated X-ray diffraction profles for interstratified kaolinitemontmorillonite. Clay Miner. 9, 393406.CrossRefGoogle Scholar
Dixon, J.B. (1977) Kaolinite and serpentine group minerals. Pp. 357403 in: Minerals in Soil Environments (Dixon, J. B. & Weed, S. B., editors). Soil Sci. Soc. of America, Madison, USA.Google Scholar
Dixon, J.B. & Brown, J.L. (1975) Interstratification in kaolinite of certain Southeastern soils. Agronomy Abstracts 175176. Am. Soc. of Agronomy, Madison, USA.Google Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331363 in: The Infrared Spectra of Minerals (Farmer, V. C., editor). Mineralogical Society, London.CrossRefGoogle Scholar
Goodman, B.A., Russell, J.D., Fraser, A.R. & Woodhams, F.W.D. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays Clay Miner. 24, 5459.Google Scholar
Grim, R.E. (1968) Clay Mineralogy. McGraw Hill, New York.Google Scholar
Hermllon, A.J., Mestdagh, M.M., Vielvoye, L. & Derouane, E.G. (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner. 11, 201220.CrossRefGoogle Scholar
Herbillon, A.J., Frankart, R. & Vielvoye, L. (1981) An occurrence of interstratified kaolinite-smectite in a red-black toposequence. Clay Miner. 16, 195201.Google Scholar
Janot, Ch., Gibert, H. & Tobias, C. (1973) Caractérisation des kaolinites ferrifères par spectrometric Mössbauer. Bull Soc. Franç. Minéralogie et Cristallographie 96, 281289.CrossRefGoogle Scholar
Kohyama, N. & Sudo, T. (1975) Hisingerite occurring as a weathering product of iron-rich saponite. Clays Clay Miner. 23, 215218.Google Scholar
Kunze, G.W. & Bradley, W.E. (1964) Occurrence of a tabular halloysite in a Texas soil. Clays Clay Miner. 12, 523527.Google Scholar
McKeague, J.A. & Day, J.H. (1966) Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Canadian J. Soil Sci. 46, 1322.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clays by a ditbionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7, 317327.CrossRefGoogle Scholar
Nagasawa, K. (1978) Kaolin minerals. Pp. 193213 in: Clays and Clay Minerals of Japan (Sudo, T. & Shimoda, S., Editors). Elsevier, Amsterdam.Google Scholar
Quantin, P. (1972–79) Archipel des Nouvelles-Hébrides; Atlas des sols et de quelques données du milieu naturel. 7 fascicules et 18 planches en couleur (carte pédologique et cartes annexes de géologie, formes du relief, végétation) ORSTOM, Paris.Google Scholar
Quantin, P. (1982) Proposition du taux de capacité d'échange de cations dépendante du pH, comme critère de classification des andosols des Nouvelles-Hébrides (Vanuatu). Cah. ORSTOM, sér. Pédologie XIX, 4, 369380.Google Scholar
Quantin, P. (1984) Détermination des constituants minéraux amorphes et crypto-cristallins d'andosols par l'analyse cinétique de leur dissolution par HC1 et NaOH. Science du Sol (sous presse).Google Scholar
Quantin, P. & Lamouroux, M. (1974) Adaptation de la méthode cinétique de Srégalen à la détermination des constituants minéraux de sols variés. Cah. ORSTOM, sér. Pédologie XII, 1, 1346.Google Scholar
Russell, J., Parfitt, R.L. & Claridge, G.C. (1981) Estimation of the amounts of allophane and other materials in the clay fraction of an Egmont Loam Profile and other volcanic ash soils, New Zealand. Australian J. Soil Res. 19, 185195.CrossRefGoogle Scholar
Souza, Santos P., Souza, Santos H. & Brindley, G.W. (1966) Mineralogical studies of Kaolinite-halloysite clays: Part IV. A platy mineral with structural swelling and shrinking characteristics. Am. Miner. 51, 16401648.Google Scholar
Tazaki, K. (1978) Micromorphology of halloysite produced by weathering of plagioclase in volcanic ash. Proe. Int. Clay Conf. Oxford 1978, 415424.Google Scholar
Tazaki, K. (1982) Analytical electron microscopic studies of halloysite formation processes. Morphology and composition of halloysite. Proc. Int. Clay Conf. Bologna and Pavia 1981, 573584.Google Scholar
Wada, S.I. & Mizota, C. (1982) Iron rich halloysite with crumpled lamellar morphology from Hokkaido, Japan. Clays Clay Miner. 30, 315317.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Elsevier, Amsterdam, 213 pp.Google Scholar
Wilke, B.M., Schwertmann, U. & Murad, E. (1978) An occurrence of polymorphic halloysite in granite saprolite of the Bayerische Wald, Germany. Clay Miner. 13, 6778.Google Scholar
Yariv, S. (1975) Infrared study of the interaction between cesium chloride and kaolinite. J. Chem. Soc. Faraday Trans. I, 71, 674684.CrossRefGoogle Scholar