Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T20:36:01.908Z Has data issue: false hasContentIssue false

K-rich rectorite from kaolinized micaschist of the Sesia-Lanzo Zone, Italy

Published online by Cambridge University Press:  09 July 2018

E. Benincasa
Affiliation:
Department of Earth Sciences, Modena and Reggio Emilia University, I-41100 Modena, Italy
M. F. Brigatti*
Affiliation:
Department of Earth Sciences, Modena and Reggio Emilia University, I-41100 Modena, Italy
L. Medici
Affiliation:
Department of Earth Sciences, Modena and Reggio Emilia University, I-41100 Modena, Italy
L. Poppi
Affiliation:
Department of Earth Sciences, Modena and Reggio Emilia University, I-41100 Modena, Italy
*

Abstract

Rectorite crystals [[4](Si6.81Al1.19)[6](Al3.26Ti0.04Fe0.553+Mg0.18Mn0.01)[12](Na0.02K0.88 Mg0.16Ca0.01)O20(OH)0.75H2O] found in micaschist of the Sesia-Lanzo Zone (NW Italy) were studied using a variety of techniques including microprobe analysis, infrared spectroscopy, single crystal and powder X-ray diffraction, atomic force microscopy and thermal analysis. Chemical data and exchangeable cation determination indicate that K+ is the dominant non-exchangeable interlayer cation, and thus is believed to occupy the mica interlayer site; Mg2+ together with small amounts of Ca2+, Na+ and K+ represent the exchangeable cations and can therefore be related to the smectite-like component. The coefficient of variation, CV, of d(00l) values (CVnatural = 0.47; CVglycolated = 0.43) demonstrates the regularity of the mica-smectite interstratification, whereas the unit-cell parameters obtained by single crystal methods suggest different layer-stacking models.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Peacor, D.R. (1986) Transmission electron microscope data for rectorite: Implications for the origin and structure of “fundamental particles”. Clays Clay Miner. 34, 180–186.Google Scholar
Allmann, R. (1984) LATCOREF. F.B. Geowissennschaften, Marburg, Germany.Google Scholar
Altaner, S.P. & Ylagan, R.F. (1997) Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization. Clays Clay Miner. 45, 517–533.Google Scholar
Bailey, S.W. (1984) Crystal Chemistry of the True Micas. Pp. 13–60 in. Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C.Google Scholar
Bailey, S.W., Brindley, G.W., Kodama, H. & Martin, R.T. (1982) Report of the Clay Minerals Society Nomen clature Committee19801981 : Nomenclature for regular interstratification. Clays Clay Miner. 30, 76–78.Google Scholar
Bertolani, M. & Loschi Ghiottoni, A.G. (1990) Aree caolinizzate nel Canavese presso Castellamonte (Torino). Boll. Assoc. Mineraria Subalpina, Anno XXVII, 63–71.Google Scholar
Brackett, R.N. & Williams, J.F. (1891) Newtonite and rectorite two new minerals of the kaolinite group. Am. J. Sci. 42, 11–21.Google Scholar
Bradley, W.F. (1950) The alternating layer sequence of rectorite. Am. Miner. 35, 590–595.Google Scholar
Brindley, G.W. (1956) Allevardite, a swelling doublelayer mica mineral. Am. Miner. 41, 91–103.Google Scholar
Brown, G. & Weir, A.M. (1963) The identity of rectorite and allevardite. Proc. Int. Clay Conf., Bologna- Pavia, 27–35 Google Scholar
Caillère, S., Mathieu-Sicaud, A. & Hénin, S. (1950) Nouvel essai d’identification du minéral de la Table près Allevard, l’allevardite. Bull. Soc. Franç. Miner. Crist. 73, 193–201.Google Scholar
Compagnoni, R., Dal Piaz, G.V., Hunziker, J.C., Gosso, G., Lombardo, B. & Williams, P.F. (1977) The Sesia- Lanzo Zone, a slice of continental crust with Alpine high pressure-low temperature assemblages in the western Italian Alps. Rend. Soc. Ital. Mineral. Pet. 33, 281–334.Google Scholar
Dal Piaz, G.V., Hunziker, J.C. & Martinotti, G. (1972) La Zona Sesia-Lanzo e l’evoluzione tectonico-metamorphica delle Alpi nord occidentali interne. Mem. Soc. Geol. Ital. 11, 433–466.Google Scholar
Donovan, J.J. & Rivers, M.L. (1990) PRSUPR: APCbased automation and analysis software package for wavelength-dispersive electron-beam microanalysis. Pp. 66–68 in: Microbeam Analysis (Michael, J.R. & Ingram, P., editors). San Francisco Press, Inc., CA, USA.Google Scholar
Drits, V.A., Besson, G. & Muller, F. (1995) An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates. Clays Clay Miner. 43, 718–731.Google Scholar
Drits, V.A., Lindgreen, H., Salyn, A.L., Ylagan, T. & McCarty, D.K. (1998) Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectite by thermal analysis and X-ray diffraction. Am. Miner. 83, 1188–1198.Google Scholar
Emmerich, K., Madsen, F.T. & Kahr, G. (1999) Dehydroxylat ion behavior of heat- treated and steam-treated homoionic cis-vacant montmorillonites. Clays Clay Miner. 47, 591–604.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 4, Mineralogical Society, London.Google Scholar
Güven, N. (1991) On the definition of illite-smectite mixed-layer. Clays Clay Miner. 39, 661–662.Google Scholar
Hamilton, J.D. (1967) Partially-ordered mixed-layer mica-montmorillonite from Maitland, New South Wales. Clay Miner. 7, 63–78.Google Scholar
Hénin, S., Esquevin, J. & Caillère, S. (1954) Sur la fibrositéde certains minéraux de nature montmorillonitique. Bull. Soc. Franç. Min. 77, 491–499.Google Scholar
Inoue, A. & Utada, M. (1983) Further investigations of a conversion series of dioctahedral mica-smectites in the Shinzan hydrothermal alteration area, Northeast Japan. Clays Clay Miner. 31, 401–412.Google Scholar
Inoue, A. & Utada, M. (1989) Mineralogy and genesis of hydrothermal aluminous clays containing sudoite, tosudite, and rectorite in a drillhole near the Kamikita Kuroko ore deposit, Nortern Honshu, Japan. Clay Sci. 7, 193–217.Google Scholar
Ivkin, N.M., Kitaigorodskii, N.S., Kotel’nikov, D.D. & Korolev, Y.M. (1959) Analogue of allevardite (from Dagestan). Zap. Vses. Min., Obshch. 88, 554–563.Google Scholar
Jakobsen, H.J., Nielsen, N.C. & Lindgreen, H. (1995) Sequences of charged sheets in rectorite. Am. Miner. 80, 247–252.Google Scholar
Kawano, M. & Tomita, K. (1989) Rehydration properties of Na- rectorite from Makurazaki, Kagoshima Prefecture, Japan. Miner. J. 14, 351–372.Google Scholar
Kawano, M. & Tomita, K. (1990) Mineralogical properties of interstratified ammonium-bearing micasmctites from Aira, Kagoshima Prefecture, Japan. Miner. J. 15, 19–31.CrossRefGoogle Scholar
Kawano, M. & Tomita, K. (1992) Further investigations on the rehydration characteristics of rectorite. Clays Clay Miner. 40, 421–428.Google Scholar
Kim, J.-W., Peacor, D.R., Tessier, D. & Elsass, F. (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays Clay Miner. 43, 51–57.Google Scholar
Klimentidis, R.E. & Mackinnon, I.D.R. (1986) Highresolution imaging of ordered mixed-layer clays. Clays Clay Miner. 34, 155–164.Google Scholar
Kodama, H. (1966) The nature of component layers of rectorite. Am. Miner. 51, 1035–1055.Google Scholar
Korolev, Y.M. (1971) Some features of rectorite from Pakistan. Soviet Physics Cryst. 16, 250–253.Google Scholar
Kuwahara, Y. (1999) Muscovite surface structure imaged by fluid contact mode AFM. Phys. Chem. Miner. 26, 198–205.Google Scholar
Matsuda, T. (1984) Mineralogical study on regularly interstratified dioctahedral mica-smectite. Clay Sci. 6, 117–148.Google Scholar
Matsuda, T., Nagasawa, K., Tsuzuki, Y. & Henmi, K. (1981) Regularly interstratified dioctahedral micasmectite from Roseki Deposits in Japan. Clay Miner. 16, 91–102.Google Scholar
Matsuda, T., Kodama, H. & Fook Yang, A. (1997) Carectorite from Sano mine, Nagano Prefecture, Japan. Clays Clay Miner. 45, 773–780.CrossRefGoogle Scholar
McCarty, D.K. & Reynolds, R.C. (1995) Rationally disordered illite-smectite in Paleozoic K-bentonites. Clays Clay Miner. 43, 271–284.Google Scholar
Meyrowitz, R. (1970) New semimicroprocedure for determination of ferrous iron in refractory silicate minerals using a sodium metafluoroborate decomposition. Anal. Chem. 42, 1110–1113.Google Scholar
Morelli, G.L. & Favretto, L. (1963) Sulla presenza di allevardite in alcune argille di Kheneigate Rich (Torfaya, Marocco). Ist. Lombardo (Rend. Sc.) A97, 129–138.Google Scholar
Nadeau, P.H., Wilson, M.J., McHardy, W.J. & Tait, J.M. (1984) Interstratified clays as fundamental particles. Science, 225, 923–925.Google Scholar
Nadeau, P.H., Wilson, M.J., McHardy, W.J. & Tait, M.J. (1985) The conversion of smectite to illite during diagenesis: Evidence from some illitic clays from bentonites and sandstones. Mineral. Mag. 49, 393–400.Google Scholar
Nishiyama, T. & Shimoda, S. (1981) Ca-bearing rectorite from Tooho mine, Japan. Clays Clay Miner. 29, 236–240.Google Scholar
Pevear, D.R., Williams, W.E. & Mustoe, G.E. (1980) Kaolinite, smectite and K-rectorite in bentonites: Relation to coal rank at Tulameen, British Columbia. Clays Clay Miner. 28, 241–254.Google Scholar
Rodriguez, G.D. & Alías Pérez, L.J. (1965) A regular mixed layer mica-beidelli te. Clay Miner. 6, 119–122.Google Scholar
Russell, J.D. & Fraser, A.R. (1994) Infrared Methods. Pp. 11–67 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M. J., editor). Chapman & Hall, London.Google Scholar
Schoonmaker, J., Mackenzie, F.T. & Speed, R.C. (1986) Tectonic implications of illite-smectite diagenesis, Barbados accretionary prism. Clays Clay Miner. 34, 465–472.Google Scholar
Shimoda, S. & Sudo, T. (1960) An interstratified mixture of mica clay minerals. Am. Miner. 45, 1069–1077.Google Scholar
Środoń, J., Elsass, F., McHardy, W.J. & Morgan, D.J. (1992) Chemistry of illite-smectite inferred from TEM measurements of fundamental particles. Clay Miner. 27, 127–158.Google Scholar
Stöckhert, B. (1985) Compositional control on the polymorphism (2M 1-3T) of phengitic white mica from high pressure paragenesis of the Sesia-Lanzo Zone (lower Aosta valley, Western Alps, Italy). Contrib. Mineral. Petrol. 89, 52–58.CrossRefGoogle Scholar