Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T17:50:27.833Z Has data issue: false hasContentIssue false

Investigation of unexplored kaolin occurrences in southern Mauritania and preliminary assessment of possible applications

Published online by Cambridge University Press:  11 August 2021

D. Küster
Affiliation:
BGR, Stilleweg 2, D-30655 Hannover, Germany
Stephan Kaufhold*
Affiliation:
BGR, Stilleweg 2, D-30655 Hannover, Germany
Emanetoullah Limam
Affiliation:
Agence Nationale de Recherches Géologiques et du Patrimoine Minier (ANARPAM), Nouakchott, Mauritania
Omar Jatlaoui
Affiliation:
BGR, Stilleweg 2, D-30655 Hannover, Germany
Oumar Ba
Affiliation:
Agence Nationale de Recherches Géologiques et du Patrimoine Minier (ANARPAM), Nouakchott, Mauritania
Abdellahi Maham Zein Mohamed
Affiliation:
Agence Nationale de Recherches Géologiques et du Patrimoine Minier (ANARPAM), Nouakchott, Mauritania
M. Pohlmann-Lortz
Affiliation:
Forschungsisnstitut für Anorganische Werkstoffe – Glas/Keramik – GmbH (FGK), Heinrich-Meister-Straße 2, D-56203 Höhr-Grenzhausen, Germany
M. Ranneberg
Affiliation:
BGR, Stilleweg 2, D-30655 Hannover, Germany
K. Ufer
Affiliation:
BGR, Stilleweg 2, D-30655 Hannover, Germany
*

Abstract

Non-metallic raw materials are largely unexplored in many African countries. In an attempt to reduce this knowledge gap, kaolin occurrences in three promising regions of southern Mauritania were examined. The aim of the paper is to describe the occurrences and characterize the material in terms of mineralogy and potential technical use in the ceramics industry. The kaolins are geologically associated with various sedimentary rock units in either the Coastal Basin (Kaédi), the Mauritanide Belt (Hassi Abyad) or the Taoudeni Basin (Néma). Geochemical data show Al2O3 contents of between 9% and 38% (corresponding to 23–96% kaolinite). Samples from the Hassi Abyad and Kaédi regions have greater kaolinite contents on average and were further investigated mineralogically. The kaolin from the Néma region contained less kaolinite (<50 mass%). The region is also less accessible and hence is not considered further in this study. X-ray diffraction, X-ray fluorescence and infrared spectroscopy confirmed the geochemically calculated kaolinite contents of the kaolins and identified quartz, anatase and goethite as the remaining major mineral constituents. The degree of structural disorder of the kaolinites (determined by infrared spectroscopy) is generally greater in the Kaédi occurrences than at Hassi Abyad. Ceramic tests proved that all of these kaolin raw materials might be used for the production of ceramics, and some may even be used for fine ceramics. From an economic point of view, the Hassi Abyad deposit is interesting in terms of its quality and reserves, aspects that will be addressed in detail in a follow-up study.

Type
Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Javier Huertas

References

Awad, M.E., Amer, R., López-Galindo, A., El-Rahmanya, M.M., García del Morale, L.F. & Viseras, C. (2018) Hyperspectral remote sensing for mapping and detection of Egyptian kaolin quality. Applied Clay Science, 160, 249262.CrossRefGoogle Scholar
Baudet, G., Baron, M. & Hergibo, P.L. (1987) Étude préliminaire de la valoristion d'un échantillon de kaolin de Mauritanie. Unpublished report, BRGM, Orléans, France, 85 pp.Google Scholar
Bergmann, J., Friedel, P. & Kleeberg, R. (1998) BGMN – a new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. CPD Newsletter, 20, 58.Google Scholar
Brindley, G.W. & Brown, G. (eds) (1980) Crystal Structures of Clay Minerals and Their X-Ray Identification. The Mineralogical Society of Great Britain & Ireland, London, UK, 495 pp.Google Scholar
Brindley, G.W., Kao, C.C., Harrison, J.L., Lipsicas, M. & Raythatha, R. (1986) Relation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, 34, 239249.CrossRefGoogle Scholar
de Jongh, W.K. (1973) X-ray fluorescence analysis applying theoretical matrix correction. Stainless steel. X-Ray Spectrometry, 2, 151158.CrossRefGoogle Scholar
Dewi, R., Agusnar, H., Alfian, Z. & Tamrin, (2018) Characterization of technical kaolin using XRF, SEM, XRD, FTIR and its potentials as industrial raw materials. Journal of Physics: Conference Series, 1116, 042010.Google Scholar
Dill, H.G. (2001) The geology of aluminium phosphates and sulphates of the alunite supergoup: a review. Earth Science Reviews, 53, 3593.CrossRefGoogle Scholar
Dill, H.G. (2016) Kaolin: soil, rock and ore. From the mineral to the magmatic, sedimentary, and metamorphic environments. Earth Sciences Reviews, 161, 16129.Google Scholar
DIN 51730 (2007) Prüfung fester Brennstoffe – Bestimmung des Asche-Schmelzverhaltens (English: Testing of Solid Fuels – Determination of Fusibility of Fuel Ash). Beuth Verlag, Berlin, Germany, 19 pp.Google Scholar
DIN EN 993-1 (2019) Methods of Test for Dense Shaped Refractory Products – Part 1: Determination of Bulk Density, Apparent Porosity and True Porosity; German version EN 993-1:2018. Beuth Verlag, Berlin, Germany, 27 pp.Google Scholar
Döbelin, N. & Kleeberg, R. (2015) Profex: a graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography, 48, 15731580.CrossRefGoogle Scholar
Ekosse, G.-I.E. (2010) Kaolin deposits and occurrences in Africa: geology, mineralogy and utilization. Eastern Cape 5117, South Africa. Applied Clay Science, 50, 212236.CrossRefGoogle Scholar
Fiore, S., Huertas, J., Huertas, F. & Linares, J. (1995) Morphology of kaolinite crystals synthesized under hydrothermal conditions. Clays and Clay Minerals, 43, 353360.CrossRefGoogle Scholar
Harben, P.W. (1992) The Industrial Minerals Handybook. A Guide to Markets, Specification and Prices. Metal Bulletin PLC, London, UK, 412 pp.Google Scholar
Harvey, C.C. & Murray, H.H. (1997) Industrial clays in the 21st century: a perspective of exploration, technology and utilization. Applied Clay Science, 11, 285310.CrossRefGoogle Scholar
Hurst, V.L. & Pickering, S.M. Jr (1997) Origin and classification of Coastal Plain kaolins, southeastern USA, and the role of groundwater and microbial action. Clays and Clay Minerals, 45, 274285.CrossRefGoogle Scholar
Kaufhold, S. & Dohrmann, R. (2013) The variable charge of dioctahedral clay minerals. Journal of Colloid and Interface Science, 390, 225233.CrossRefGoogle Scholar
Kogel, J.E. (2014) Mining and processing kaolin. Elements, 10, 189193.CrossRefGoogle Scholar
Kogure, T., Inoue, A. & Beaufort, D.F. (2005) Polytype and morphology analyses of kaolin minerals by electron back-scattered diffraction. Clays and Clay Minerals, 53, 201210.CrossRefGoogle Scholar
Langer, W.H. & Horton, J.D. (2012) Occurences des minérales rapporté de l'industrie et zones ‘permissive’ pour autres occurences dans la Mauritanie. US Geological Survey, Reston, VA, USA, 22 pp.Google Scholar
Limam, E., Ba, O., Mohamed, A.M. & Kuester, D. (2017) Rapport de Mission de Reconnaissance sur l’Évaluation des Ressources Exploitables de Calcaire et de Kaolin. Unpublished report. OMRG, Nouakchott, Mauritania, 12 pp.Google Scholar
Limam, E., Ba, O. & Mohamed, A.M. (2018) Rapport de Mission de Reconnaissance des Kaolins du Dhar (Axe Néma – Oualata). Unpublished report. OMRG, Nouakchott, Mauritania, 18 pp.Google Scholar
Meier, L.P. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tretraethylenepentamine. Clays and Clay Minerals, 47, 386388.CrossRefGoogle Scholar
Mercier, P.H.J. & Page, Y.L. (2008) Kaolin polytypes revisited ab initio. Acta Crystallographica. Section B, Structural Science, 64, 131143.CrossRefGoogle ScholarPubMed
Murray, H. (1998) Kaolin minerals: their genesis and occurrences. Pp. 6789 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Mineralogical Society of America, Washington, DC, USA.Google Scholar
Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin-Nomade, A. et al. (2006) Genesis of Mayouom kaolin deposit (western Cameroon). Applied Clay Science, 32, 125140.CrossRefGoogle Scholar
OMRG (2015) Office Mauritanien de Recherches Géologiques. Géologie générale de la Mauritanie. Available from https://anarpam.mr/activites-geologiques/#Google Scholar
Parker, T.W. (1969) A classification of kaolinites by infrared spectroscopy. Clay Minerals, 8, 135141.CrossRefGoogle Scholar
Pitfield, P.E.J., Key, R.M., Waters, C.N., Hawkins, M.P.H., Schofield, D.I., Loughlin, S. & Barnes, R.P. (2004) Notice explicative des cartes géologiques et gîtologiques à 1/200 000 et 1/500 000 du Sud de la Mauritanie. Volume 1 – Géologie. DMG, Ministère des Mines et de l'Industrie, Nouakchott, Mauritania, 547 pp.Google Scholar
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 1167 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M.J., editor). Chapman and Hall, London, UK.CrossRefGoogle Scholar
Sakharov, B.A., Drits, V.A., McCarty, D.K. & Walker, G.M. (2016) Modeling powder X-ray diffraction patterns of the clay minerals society kaolinite standards: KGA-1, KGA-1b, AND KGa-2. Clays and Clay Minerals, 64, 314333.CrossRefGoogle Scholar
Ufer, K., Kleeberg, R. & Monecke, T. (2015) Quantification of stacking disordered Si–Al layer silicates by the Rietveld method: application to exploration for high-sulphidation epithermal gold deposits. Powder Diffraction, 30, 111118.CrossRefGoogle Scholar
Zhang, S., Liu, Q., Yang, Y., Wang, D., He, J. & Sun, L. (2017) Preparation, morphology, and structure of kaolinites with various aspect ratios. Applied Clay Science, 147, 117122.Google Scholar