Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T05:22:05.519Z Has data issue: false hasContentIssue false

Hydrothermal transformation of kaolinite to illite at 200 and 300ºC

Published online by Cambridge University Press:  09 July 2018

M. Bentabol
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga
M. D. Ruiz Cruz*
Affiliation:
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga
F. J . Huertas
Affiliation:
Estación Experimental del Zaidín, C.S.I.C. Granada, Spain
J . Linares
Affiliation:
Estación Experimental del Zaidín, C.S.I.C. Granada, Spain
*

Abstract

The hydrothermal reaction of kaolinite in the system Na2O-K2O-(MgO)-Al2O3-SiO2- H2O has been investigated at 200 and 300ºC. The study of the solid products indicates that, at 200ºC, disordered illite was the first phase formed, which evolved at increasing run times towards well ordered illite and analcime. After longer reaction times illite and kaolinite were the sole phases identified by XRD. The b parameter of the illites increased at longer reaction times, from 9.05 to 9.08 Å. Study by TEM/AEM revealed the presence of surface chlorite-like layers, covering the illite packets, however. The trend observed in the products of the reaction at 300ºC was similar, except for the presence of boehmite or pseudoboehmite at the higher temperature. The values of the bparameter of illite, of the order of 9.12 –9.16 Å, indicate that illites formed at 300ºC have a more trioctahedral character. The results obtained also indicate that Mg determines which product will be formed, Kand Na-zeolites and Al-rich illites being the phases formed in the absence of Mg.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H., Peacor, D.R. & Coombs, D.S. (1988) Formation mechanisms of illite, chlorite and mixed-layers illite-chlorite in Triassic volcanogenic sediments from the Southland Syncline, New Zea land. Cont ribut ions to Mineralog y and Petrology, 99, 8289.Google Scholar
Bauer, A., Velde, B. & Berger, G. (1998) Kaolinite transformatio n in high molar KOH solutions. Applied Geochemistry, 13, 619629.Google Scholar
Bjorkum, P.A. & Gjelsvik, N. (1988) An isochemical model for formation of authigenic kaolinite, Kfeldspar and illite in sediments. Journal of Sedimentary Petrology, 58, 506511.Google Scholar
Bjorlikke, K. (1980) Clastic diagenesis and basin evolution. Revista del Instituto de Investigaciones Geológicas. Diputación Provincial, Universidad de Barcelona, 34, 2144.Google Scholar
Brown, E.H. (1968) The Si4 + content of natural phengi tes: A discus sion. Cont ribut ions to Mineralogy and Petrology, 17, 7881.CrossRefGoogle Scholar
Chermak, J.A. & Rimstidt, J.D. (1990) The hydrothermal transformation of kaolinite to muscovite/ illite. Geochimica et Cosmochimica Acta, 54, 29792990.CrossRefGoogle Scholar
Drief, A. & Nieto, F. (1999) The effect of dry grinding on the Mulhacén antigorite. Clays and Clay Minerals, 47, 417424.CrossRefGoogle Scholar
González Jesu´s, J., Huertas, F.J., Linares, J. & Ruiz Cruz, M.D. (2000) Textural and structural transformations of kaolinites in aqueous solutions. Applied Clay Science, 17, 245263.Google Scholar
Guidotti, C.V. (1987) Micas in metamorphic rocks. Pp. 357467 in. Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C.Google Scholar
Güven, N. & Huang, W.L. (1991) Effect of Mg2+ and Fe3+ on the hydrothermal illitization reactions. Clays and Clay Minerals, 39, 387399.Google Scholar
Hower, J. & Mowatt, T.C. (1966) The mineralogy of illites and mixed-layer illite/montmori llonite. American Mineralogist, 51, 825854.Google Scholar
Hurst, A. & Irving, H. (1982) Geological modelling of clay diagenesis in sandstones. Clays and Clay Minerals, 17, 522.Google Scholar
Huang, W.J. (1993) The formation of illitic clays from kaolinite in KOH solutions from 225ºC to 350ºC. Clays and Clay Minerals, 41, 645654.Google Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Pp. 289493 in: Diagenesis in Sediments and Sedimentary Rocks Vol. 2 (Larsen, G. & Chilinger, G.V., editors). Elsevier, Amsterdam.Google Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277279.Google Scholar
Kulbicki, G. & Millot, G. (1969) L’évolution de la fraction argileuse des grès petroliers cambro-ordoviciens du Sahara central. Bulletin du Service de la Carte Géologique d’Alsace-Loraine, 13, 147156.Google Scholar
Lorimer, G.W. & Cliff, G. (1976) Analytical electron microscopy of minerals. Pp. 506519 in: Electron Microscopy in Mineralogy (Wenk, H.R. editor). Springer-Verlag, New York.Google Scholar
Ma, C. & Eggleton, R.A. (1999) Surface layer types of kaolinite: A high-resolution transmission electron microscope study. Clays and Clay Minerals, 47, 181191.Google Scholar
Nadeau, P.H., Wilson, M.J., McHardy, W.J. & Tait, J.M. (1984) Interstratified clays as fundamental particles. Science, 225, 923925.Google Scholar
Ruiz Cruz, M.D. (2001) Mixed-layer mica-chlorite in very low-grade metaclastites from the Maláguide Complex (Betic Cordilleras, Spain). Clay Minerals, 36, 307324.CrossRefGoogle Scholar
Sutheimer, S.H., Maurice, P.A. & Zhou, Q. (1999) Dissolution of well and poorly crystallized kaolinites: Al speciation and effects of surface characteristics. American Mineralogist, 84, 620628.Google Scholar
Velde, B. (1965) Experimental determination of muscovite polymorph stabilities. American Mineralogist, 50, 436449.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals . Elsevier, 213 pp.Google Scholar