Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T05:14:58.507Z Has data issue: false hasContentIssue false

Genesis of kaolinite from Albian sedimentary deposits of the Iberian Range (NE Spain): analysis by XRD, SEM and TEM

Published online by Cambridge University Press:  09 July 2018

B. Bauluz*
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50.009 Zaragoza, Spain
M. J. Mayayo
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50.009 Zaragoza, Spain
A. Yuste
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50.009 Zaragoza, Spain
J. M. González López
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50.009 Zaragoza, Spain
*

Abstract

The kaolinite from Albian sedimentary deposits (Escucha and Utrillas Formations) of the Iberian Range (Spain) have been investigated. This research has shown the presence of different types of kaolinites (detrital and diagenetic) along with micaceous phases in these deposits. Detrital kaolinites show anhedral morphology, low crystallinity and a degree of ordering as well as the presence of interstratified smectite layers. They constitute the matrix of the claystones and siltstones and were probably formed as a consequence of intense weathering processes in the source area during the warm period of the early Cretaceous. Diagenetic kaolinites have been recognized in the sandstones and siltstones, with kaolinite growing between ‘expanded’ mica flakes and vermiform and euhedral kaolinite forming the matrix. They have euhedral morphologies, high crystallinity and a high degree of ordering. They grew in situ as a response to incipient diagenesis by K-feldspar dissolution and/or organic acid-rich fluids derived from the maturation of organic matter in shales.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, M.J., Ramirez del Pozo, J. & Riba, O. (1971) Algunas precisiones sobre la sedimentation y paleoecologia del Cretacico inferior de la zona de Utrillas-Villarroya de los Pinares (Teruel). Estudios Geologicos, 27, 497512.Google Scholar
Aparicio, P. & Galán, E. (1999) Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay Minerals, 47, 1227.CrossRefGoogle Scholar
Arostegui, J., Irabien, M.J., Nieto, F., Sanguesa, J. & Zuluaga, M.C. (2001) Microtextures and origin of the muscovite-kaolinite intergrowths in sandstones of the Utrillas Formation, Basque Cantabrian Basin, Spain. Clays and Clay Minerals, 49, 529539.Google Scholar
Balan, E., Fritsch, E., Allard, T. & Calas, G. (2007) Inheritance vs. neoformation of kaolinite during lateritic soil formation: A case study in the middle Amazon basin. Clays and Clay Minerals, 55, 253259.Google Scholar
Bastida, J., Lores, M.T., de la Torre, J., Pardo, P. & López Buendía, A.M. (2006) Modificatión microstructural de minerales arcillosos en ball clays de Teruel mediante tratamiento térmico. Boletín Sociedad Española de Ceramica y Vidrio, 45, 3845.Google Scholar
Bauluz, B., Peacor, D.R. & Gonzalez López, J.M. (2000) Transmission electron microscopy study of illitization in pelites from the Iberian Range, Spain, layer-by-layer replacement. Clays and Clay Minerals, 48, 6474.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and ocean. Geological Society of America Bulletin, 76, 803832.CrossRefGoogle Scholar
Bjorlykke, K., Nedkvitine, T., Ramm, M. & Saigal, G.C. (1992) Diagenetic process in the Brent Group (Middle Jurassic) reservoirs of the North Sea: An overview. Pp. 263287 in. Geology of the Brent Group (Morton, A.C., Haszeldine, R.S., Giles, M.R. & Brown, S., editors). Special Publication 61, Geological Society, London.Google Scholar
Blackbourn, G.A. (1984) Diagenetic history and reservoir quality of a Brent sand sequence. Clay Minerals, 19, 377389.Google Scholar
Burley, S.D. & MacQuaker, J.H.S. (1992) Authigenic clays, diagenetic sequences and conceptual diagenetic models in contrasting basin-margin and basincenter North Sea Jurassic sandstones and mudstones. Pp. 81110 in: Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D.W. & Pittman, E.D., editors). SEPM Special Publication 47, SEPM, Tulsa, Oklahoma, USA.Google Scholar
Cases, J.M., Lietard, O., Yvon, J. & Delon, J.F. (1982) Etude des propietes cristallochimiques, morphologiques, superficielles de kaolinites desordonnees. Bulletin of Mineralogy, 105, 439455.Google Scholar
Cervera, A., Pardo, G. & Villena, J. (1976) Algunas precisiones litoestratigráficas sobre la Formation ‘Lignitos de Escucha’. Tecniterrae, 3, 2533.Google Scholar
Churchman, G.J. & Theng, B.K.G. (1984) Interactions of halloysites with amides: mineralogical factors affecting complex formation. Clay Minerals, 19, 161175.Google Scholar
Cliff, G. & Lorimer, G.W. (1975) The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203207.Google Scholar
De Ros, L.F. (1998) Heterogeneous generation and evolution of diagenetic quartzarenites in the Silurian- Devonian Furnas Formation of the Paraná Basin, southern Brazil. Sedimentary Geology, 116, 99128.Google Scholar
Díaz Samoano, M., Suárez-Ruiz, I., Alonso, J.I.G., Ruiz Encinar, J., López Antón, M.A. & Martinez-Tarazona, M.R. (2007) Lead isotope ratios in Spanish coals of different characteristics and origin. International Journal of Coal Geology, 71, 2836.CrossRefGoogle Scholar
Ehrenberg, S.N. (1991) Kaolinized, potassium-leached zones at the contacts of the Garn formation, Haltenbanken, mid-Norwegian continental shelf. Marine Petroleum Geology, 8, 250269.Google Scholar
Ehrenberg, S.N., Aagaard, P., Wilson, M.J., Fraser, A.R. & Duthi, D.M.L. (1993) Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Minerals, 28, 325352.Google Scholar
Garcia-Portillo, C., Bastida, J., Pardo, P., Rodríguez-López, G., Lacruz, M.J., Vilar, M.L. & Lázaro, A. (2005) Influencia de las características microestructurales de caolinita en las propiedades de sus pastas de colaje. Boletin Sociedad Española Ceramica y vidrio, 44, 239244.Google Scholar
Gaupp, R., Matter, A., Platt, J., Ramseyer, K. & Walzebuck, J. (1993) Diagenesis and fluid evolution of a deeply buried Permian (Rotliegende) gas reservoir, Northwest Germany. American Association of Petroleum Geologists Bulletin, 77, 11111128.Google Scholar
Goodchild, M.W. & Whitaker, J.C.M. (1986) A petrographic study of the Rotliegendes sandstone reservoir (Lower Permian) in the Rough gas field. Clay Minerals, 21, 459477.CrossRefGoogle Scholar
Hancock, N.J. (1978) Possible causes of Rotliegend sandstone diagenesis in northern West Germany. Journal of the Geological Society, London, 135, 3540.Google Scholar
Hancock, N.J. and Taylor, A.M. (1978) Clay mineral diagenesis and oil migration in the Middle Jurassic Brent sand formation. Journal of the Geological Society, London, 135, 6972.Google Scholar
Hunt, J.M. (1979) Petroleum Geochemistry and Geology. Freeman, San Francisco.Google Scholar
Kretz, R. (1983) Symbols for rock-forming minerals. American Mineralogist, 68, 277279.Google Scholar
Lietard, O. (1977) Contribution à l'étude des propiétés phisicochimiques, crystallographiques et morphologiques des kaolins. PhD thesis, Nancy, France, 345 pp.Google Scholar
Lonoy, A., Akelsen, J. & Ronning, K. (1986) Diagenesis of a deeply buried sandstone reservoir: Hield Field, northen North Sea. Clay Minerals, 21, 497511.Google Scholar
MacAulay, G.E., Burley, S.D. & Johnes, L.H. (1993) Silicate mineral authigenesis in the Hutton and NW Hutton fields: implications for sub-surface porosity development. Pp. 13771393 in: Petroleum Geology of Northwest Europe (Parker, J.R., editor). The Geological Society, London.Google Scholar
Mansfield, C.F. & Bailey, S.W. (1972) Twin and pseudotwin intergrowths in kaolinite. American Mineralogist, 57, 411425.Google Scholar
Martin, J.D. (2004) Using XPowder: a software package for powder X-ray diffraction analysis. 105 pp. Retrieved from http://www.xpowder.com.Google Scholar
Nedkvitne, T. & Bjorlykke, K. (1992) Secondary porosity in the Brent Group (Middle Jurassic) Hulddra field, North Sea: Implication for predicting lateral continuity of sandstones. Journal of Sedimentary Petrology, 62, 2334.Google Scholar
Osborne, M., Haszeldine, R.S. & Fallick, A.E. (1994) Variation in kaolinite morphology with growth temperature in isotopically mixed pore-fluids, Brent group, UK North Sea. Clay Minerals, 29, 591608.Google Scholar
Pardo, G. (1974) Nota previa sobre las características litoestratigráficas de las formaciones ‘Arenas de Utrillas’ y ‘Lignitos de Escucha’. Ada Geolbgica Hispdnica, 27, 497512.Google Scholar
Pardo, G. (1979) Estratigrafia y sedimentología de las formaciones detríticas del Cretdcico inferior terminal en el Bajo Aragon turolense. PhD thesis, Universidad de Zaragoza, Spain, 470 pp.Google Scholar
Pardo, G. & Villena, J. (1979a) Estudio sedimentológico de las arenas de Utrillas en las cuencas de Utrillas y Estercuel (provincia de Teruel). Estudios Geológicos, 35, 645650.Google Scholar
Pardo, G. & Villena, J. (1979a) Características sedimentológicas y paleogeográficas de la Formatión Escucha. Cuadernos Geología Ibérica, 5, 407418.Google Scholar
Pierrot, D., Rodríguez-López, J.P., Lassaletta, L., Meléndez, N. & Barrón, E. (2007) Contributions to the palaeoenvironmental knowledge of the Escucha Formation in the Lower Cretaceous Oliete Subbasin, Teruel, Spain. Comptes Rendus Palevolution, 6, 469481.Google Scholar
Platt, J.D. (1993) Controls on clay mineral distribution and chemistry in the early Permian Rotliegend of Germany. Clay Minerals, 28, 393416.Google Scholar
Pye, K. & Krinsley, D.H. (1986) Diagenetic carbonate and evaporite minerals in Rotliegend aeolian sandstones of the southern North Sea: their nature and relationship to secondary porosity development. Clay Minerals, 21, 443457.Google Scholar
Querol, X. (1988) Estudio geológico de la Formación Escucha en al Cuenca del Maestrazgo, Cordillera Ibérica Oriental. PhD thesis, Universidades de Barcelona, Spain, 261 pp.Google Scholar
Querol, X. (1990) Distribución de azufre y material mineral en los carbones de la Formación Escucha. Relaciones con los factores geológicos, sedimentológicos y diagenéticos. PhD thesis, Universidad de Barcelona, Spain, 523 pp.Google Scholar
Querol, X., Fernandez, J.L., Lopez, A., Hagemann, J.W., Dehmer, J., Juan, R. & Ruiz, C. (1991) Distribution of sulfur in coals of the Teruel Mining district, Spain. International Journal of Coal Geology, 18, 327346.Google Scholar
Querol, X., Salas, R., Pardo, G. & Ardevol, L. (1992) Albian coal-bearing deposits of the Iberian Range in north eastern Spain. Pp. 193208 in. Controls on the Distribution and Quality of Cretaceous Coals. (McCabe, P.J. & Totman, J.P., editors). Geological Special Paper 267, Geological Society of America.Google Scholar
Rodríguez-López, J.P., Meléndez, N., Soria, A.S., Liesa, C.L. & Van Loon, A.J. (2007) Lateral variability of ancient seismites related to differences in sedimentary facies (the synrift Escucha Formation, mid- Cretaceous, eastern Spain). Sedimentary Geology, 201, 468484.Google Scholar
Rossel, N.C. (1992) Clay mineral diagenesis in Roetliegend aeolian sandstones of the southern North Sea. Clay Minerals, 17, 6977.Google Scholar
Salas, R. (1987) El Malm i el Cretaci inferior entre el Massis de Garrf I la Serra d'Espadá: Anàlisi de conca. PhD thesis, Universidad de Barcelona, Spain, 477 pp.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre shale. USGS Professional Paper, 391-C, 31.CrossRefGoogle Scholar
Sommer, F. (1978) Diagenesis of Jurassic sandstones in the Viking Graben. Journal of the Geological Society, London, 135, 6367.Google Scholar
Środoń, J. & Eberl, D.D. (1984) Illite. Pp. 495544 in: Micas (Ribbe, P.H., editor). Reviews in Mineralogy 13, Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar