Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T15:51:03.574Z Has data issue: false hasContentIssue false

Distribution and origin of clay minerals in the Lower Cretaceous of the Alava Block (Basque-Cantabrian Basin, Spain)

Published online by Cambridge University Press:  09 July 2018

F. J. Sangüesa
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, 48080 Bilbao
J. Arostegui*
Affiliation:
Departamento de Mineralogía y Petrología, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, 48080 Bilbao
I. Suarez-Ruiz
Affiliation:
Instituto Nacional del Carbón (C.S.I.C.), Apdo. 73, 33080 Oviedo, Spain
*

Abstract

Lower Cretaceous clay minerals suites of the Alava Block, analysed by XRD, are dominated either by illite or kaolinite. These assemblages are mainly inherited in origin, although textural evidence (SEM) indicates some diagenetic clay. Precipitation of blocky kaolinite took place in sandstones from the southern domain of the Block, characterized by low sedimentation and subsidence rates and by low vitrinite reflectance values (%Rr <0.8). In the northern domain, where sedimentation and subsidence rates were high (%Rr >3.3), illitization of kaolinite and smectitic clays and precipitation of authigenic chlorite occurred. Some chemical aspects of these reactions are discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awwiller, D.N. (1993) Illite/smectite formation and potassium mass transfer during burial diagenesis of mudrocks: a study from the Texas Gulf Coast Paleocene-Eocene. J. Sed. Pet. 63, 501–512.Google Scholar
Barahona, E. (1974) Ardllas de ladrilleria en la provincia de Granada. Evaluatión de algunos ensayos de materias primas. PhD thesis. Univ. Granada, Spain.Google Scholar
Barrier, D., Buatier, M., López, M., Potdevin, J.L., Chamley, H. & Arostegui, J. (1998) Lithological control on the occurrence of chlorite in the diagenetic Wealden complex of the Bilbao anticlinorium (Basque-Cantabrian Basin, Northern Spain). Clay Miner. 33, 317–332.Google Scholar
Bjorkum, P.A. & Gjelsvik, N. (1988) An isochemical model for formation of authigenic kaolinite, Kfeldspar and illite in sediments. J. Sed. Pet. 58, 506–511.Google Scholar
Bjorlykke, K. & Aagaard, P. (1992) Clay minerals in North Sea sandstones. Pp. 65–80 in: Origin, Diagenesis and Petrophysics of Clay Minerals in Sandstones (Houseknecht, D.W. & Pittman, E.D., editors). Society of Economic Paleontology and Mineralogy. Spec. Publ. 47.Google Scholar
Bjorlykke, K. (1998) Clay mineral diagenesis in sedimentary basins–a key to the prediction of rock properties. Examples from the North Sea Basin. Clay Miner. 33, 15–34.Google Scholar
Borchardt, G.A. (1977) Montmorillonite and other smectite minerals. Pp. 293–330 in: Minerals in Soil Environments (Dixon, J.B. & Weed, S.B., editors). Soil Science Society of America. Madison, Wisconsin.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Crowley, T.J. & North, G.R. (1991) Paleoclimatology. Oxford Monographs on Geology and Geophysics, 15. Oxford University Press.Google Scholar
Curtis, C.D. (1983) Link betweeen aluminium mobility and destruction of secondary porosity. Am. Assoc. Petrol. Geol. Bull. 67, 380–384.Google Scholar
Ehrenberg, S.N. & Nadeau, P.H. (1989) Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken area, mid-Norwegian continental shelf. Clay Miner. 24, 233–253.Google Scholar
Freed, R.L. & Peacor, D.R. (1992) Diagenesis and the formation of authigenic illite-rich I/S crystals in Gulf Coast shales: TEM study of clay separates. J. Sed. Pet. 62, 220–234.Google Scholar
García-Mondejar, J. (1982) Aptiense y Albiense. Pp. 63–84 in: El Cretácico de España. Univ. Complutense, Madrid.Google Scholar
Hillier, S. (1993) Origin, diagenesis and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays Clay Miner. 41, 240–259.CrossRefGoogle Scholar
Hillier, S. (1995) Erosion, sedimentation and sedimentary origin of clays. Pp. 162–219 in: Origin and Mineralogy of Clays. Clays and the Environment (Velde, B., editor). Springer, Berlin.Google Scholar
Huggett, J.M. (1996) Aluminosislicate diagenesis in a Tertiary sandstone-mudrock sequence from the central North Sea, UK. Clay Miner. 31, 523–536.CrossRefGoogle Scholar
Hutcheon, I., Oldershaw, A. & Ghent, D. (1980) Diagenesis of Cretaceous sandstones of the Kootenay Formation at Elk Valley (southeastern British Columbia) and Mt. Allan (southwestern Alberta). Geochim. Cosmochim. Ada, 44, 1425–1435.Google Scholar
International Committee for Coal Petrology ICCP (1971-1975) International Handbook of Coal Petrology. Centre National de la Recherche Scientifique, Paris.Google Scholar
International Standards Organization (ISO) (1984) Methods for the petrographic analysis of bituminous coal and anthracite. Part 5: Method of determining microscopically the reflectance of vitrinite. ISO 7404/5(1984). 1st edition.Google Scholar
Lanson, B., Beaufort, D., Berger, G., Baradat, J. & Lacharpagne, J.C. (1996) Illitization of diagenetic kaolinite-to-dickite series: late-stage diagenesis of the Lower Permian Rotliegend sandstone reservoir, offshore of the Netherlands. J. Sed. Pet. 66, 501–518.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK.Google Scholar
Morad, S. (1986) Albitization of K-feldspar grains in Proterozoic arkoses and greywackes from southern Sweden. Neues Jahrb. Miner., Mon. 4, 145–156.Google Scholar
Muffer, L.J.P. & White, D.E. (1969) Active metamorphism of Upper cenozoic sediments in the Salton Sea geothermal field and Salton Though, southern California. Bull. Geol. Soc. Am. 80, 157–182.Google Scholar
Nesbitt, H.W. & Young, G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.Google Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D.R. & Arostegui, J. (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner. 44, 304–323.Google Scholar
Oinuma, K., Shimoda, S. & Sudo, T. (1972a) Triangular diagrams for surveying chemical compositions of chlorites. J. Tokyo Univ., Nat. Sci. 15, 1–33.Google Scholar
Oinuma, K., Shimoda, S. & Sudo, T. (1972b) Triangular diagrams in use of a survey of crystal chemistry of chlorites. Proc. Int. Clay Conf. Madrid, 161-171.Google Scholar
Parham, W.E. (1966) Lateral variations of clay mineral assemblages in modern and ancient sediments. Proc. Int. Clay Conf. Jerusalem, 135–145.Google Scholar
Porrenga, D.H. (1966) Clay minerals in recent sediments of the Niger Delta. Clays Clay Miner. 14, 221–233.Google Scholar
Ramírez del Pozo, J. (1971) Bioestratigrafía y microfacies del Jurásico y Cretácico del Norte de España (Region Cantabrica). Mem. Inst. Geol. Min. Espana, 78, 357 pp.Google Scholar
Rat, P. (1959) Les pays Crétacés Basco-Cantabriques (Espagne). PhD thesis, Univ. Dijon, France.Google Scholar
Rat, P. (1988) The Basque-Cantabrian basin between the Iberian and European plates: Some facts but still many problems. Rev. Soc. Geol. España, 1, 327–348.Google Scholar
Rieder, M., Cavazzini, G., D'Yakonov, Y., Frank- Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Miiller, G., Neiva, A.M., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. & Wones, D.R. (1998) Nomenclature of the micas. Clays Clay Miner. 46, 586–595.Google Scholar
Roser, B.P. & Korsch, R.J. (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol. 67, 119–139.Google Scholar
Sangüesa, F.J. (1998) La diagenésis en el Bloque Alavés de la cuenca Vasco-Cantábrica. PhD thesis, Univ. País Vasco, Spain.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierre Shale. U.S. Geol. Surv. Prof. Pap. 391-C.CrossRefGoogle Scholar
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments - A review. Earth Sci. Rev. 21, 251–293.Google Scholar
Środoń, J. (1984) X-ray powder diffraction identification of illitic materials. Clays Clay Miner. 32, 337–349.Google Scholar
Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Am. Assoc. Petrol. Geol. Bull. 74, 1559–1570.Google Scholar