Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T12:31:56.618Z Has data issue: false hasContentIssue false

Diagenesis of silica minerals from clay minerals in volcanic soils of Mexico

Published online by Cambridge University Press:  09 July 2018

F . Elsass*
Affiliation:
INRA, Science du Sol, Route de Saint-Cyr, F-78026 Versailles Cedex
D. Dubroeucq
Affiliation:
IRD (ex ORSTOM), 32 avenue Henri Varagnat, F-93143 Bondy Cedex
M. Thiry
Affiliation:
CIG, ENSMP, 35 rue Saint Honoré, F-77305 Fontainebleau Cedex, France
*

Abstract

Indurated volcanic soils (tepetates) of the Mexican Altiplano display thick columnar horizons, hard laminar horizons, and grey mottles at depth. X-ray diffraction (XRD) studies show a relative enrichment in cristobalite vs. halloysite in the indurated plates of the laminar horizons and in the clay fraction of the mottles. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) studies of these two soil components have shown that they are composed of small tubes of halloysite in which numerous globular grains ∼1 μm in diameter are embedded. Based on the relative abundance of cristobalite in pedological features and on the spatial relations between successive mineral phases, we interpret the cristobalite as a transformation of halloysite with a transitional amorphous phase. In the globular grains, large platy 1:1 clay minerals undergo a progressive transformation into platy particles of opal-A and opal-C. These are in turn transformed into cristobalite without further major change in their shape and appearance, except for a higher electron density than opal and clay.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buseck, P.R. & Iijima, S. (1974) High-resolution electron microscopy of silicates. Am. Miner. 59, 1 – 21.Google Scholar
Campos, A. (1991) Les tepetates de Xalapa,Veracruz (Mexique): une induration pédologique dans des sols d’origine volcanique. Structure et transformation de la couverture pédologique. Cah. ORSTOM, Sér. pédologie, 26, 227 – 334.Google Scholar
Campos, A. & Dubroeucq, D. (1990) Formación de los tepetates en suelos provenientes de las alteraciones de materiales volcánicos. Terra, 8, 137 – 147.Google Scholar
de Jong, B.H.W.S., van Hoek, J., Veeman, W.S. & Manson, D.V. (1987) X-ray diffraction and 29Si magic-angle-spinning NMR of opals: Incoherent long- and short-range order in opal CT. Am. Miner. 72, 1195 – 1203.Google Scholar
Dubroeucq, D. & Thiry, M. (1994) Indurations siliceuses dans des sols volcaniques. Comparaison avec des silcrètes anciens. Trans. 15th World Congr. Soil Sci., Acapulco, Mexico, 6a, 445 – 459.Google Scholar
Elsass, F., Beaumont, A., Pernes, M., Jaunet, A.M. & Tessier, D. (1998) Changes in layer organisation of Na- and Ca-exchanged smectite materials during solvent exchanges for embedment in resin. Can. Miner. 36, 1475 – 1483.Google Scholar
Farmer, V.C., McHardy, W.J., Elsass, F. & Robert, M. (1994) hk-ordering in aluminous nontronite and saponite synthesized near 90°C: Effects of synthesis conditions on nontronite composition and ordering. Clays Clay Miner. 42, 180 – 186.CrossRefGoogle Scholar
Gosselet, J. (1888) L’Ardenne. Mém. Carte Géol. Fr. Paris.Google Scholar
Graetsch, H. (1994) Structural characteristics of opaline and microcrystalline silica minerals. Pp. 209 – 232 in. Silica – Physical Behavior, Geochemistry and Materials Applications (Heaney, P.J., Prewitt, G.T. & Gibbs, G.V., editors). Reviews in Mineralogy, 29, Mineralogical Society of America, Washington D.C. Google Scholar
Guthrie, G.D. & Veblen, D.R. (1989) High resolution transmission electron microscopy of mixed-layer illite/smectite: Computer simulations. Clays Clay Miner. 37, 1 – 11.CrossRefGoogle Scholar
Hessmann, R. (1992) Micromorphological investigations on ‘tepetate’ formation in the ‘toba’ sediments of the state of Tlaxcala (Mexico). Terra, 10, (número especial: Suelos Volcánicos Endurecidos), 145 – 150.Google Scholar
Hidalgo, M.C. (1995) Etude d’horizons indurés à comportement de fragipan, appelés tepetates, dans des sols volcaniques de la vallée de Mexico. Contribution à la connaissance de leurs caractères et de leur formation. PhD thesis, Univ. Nancy I, France.Google Scholar
Hidalgo, M.C., Quantin, P. & Zebrowski, C. (1992) La cementación de los tepetates: estudio de la silicificación. Terra, 10, (número especial: Suelos Volcánicos Endurecidos), 192 – 201.Google Scholar
Jones, J.B. & Segnit, E.R. (1971) The nature of opal. I. Nomenclature and constituent phases. J. Geol. Soc. Aust. 18, 57– 68.Google Scholar
Kano, K. (1983) Ordering of Opal-CT in diagenesis. Geochem. J. 17, 87 – 93.CrossRefGoogle Scholar
Kano, K. & Tagushi, K. (1982) Experimental study on ordering of opal-CT. Geochem. J. 16, 33– 41.Google Scholar
Kastner, M., Keene, J.B. & Gieskes, J.M. (1977) Diagenesis of siliceous oozes – I. Chemical controls of the rate of opal-A to opal-CT transformation – an experimental study. Geochim. Cosmochim. Acta, 41, 1041 – 1059.Google Scholar
Kim, J.W., Peacor, R., Tessier, D. & Elsass, F. (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays Clay Miner. 43, 51 – 57.Google Scholar
Lucas, J., Trauth, N. & Thiry, M. (1975) Les minéraux argileux des sédiments paléogènes du bassin de Paris. Evolution des smectites et des interstratifiés (7-14sm). Bull. Groupe fr. Argiles, 26, 245 – 262.Google Scholar
Millot, G., Radier, H., Muller-Feuga, R., Defossez, M. & Wey, R. (1959) Sur la géochimie de la silice et les silicifications sahariennes. Bull. Service Carte Géol. Alsace Lorraine, 12(2), 3– 14.Google Scholar
Rayot, V. (1994) Altérations du centre de l’Australie : rôle des solutions salines dans la genèse des silcrètes et des profils blanchis. ENSMP, Mém. Sc. de la Terre, Paris, 22.Google Scholar
Rayot, V., Self, P. & Thiry, M. (1992) Transition of clay minerals to opal-CT during ground-water silicification. Pp. 47 – 59 in. Mineralogical and Geochemical Records of Paleoweathering (Schmidt, J.M. & Gall, Q., editors). ENSMP Mém. Sc. de la Terre, Paris, 18.Google Scholar
Righi, D. & Elsass, F. (1996) Characterization of soil clay minerals: decomposition of X-ray diagrams and high resolution electron microscopy. Clays Clay Miner. 44, 791 – 800.Google Scholar
Romero, R., Robert, M., Elsass, F. & Garcia, C. (1992) Abundance of halloysite neoformation in soils developed from crystalline rocks. Contribution of transmission electron microscopy. Clay Miner. 27, 21 – 33.Google Scholar
Sanders, J.V. (1975) Microstructure and crystallinity of gem opals. Am. Miner. 60, 749 – 757.Google Scholar
Środoń, J., Andreoli, C., Elsass, F. & Robert, M. (1990) Direct high-resolution electron microscopic measurements of expandability of mixed-layer illite/smectite in bentonite rock. Clays Clay Miner. 38, 373 – 379.Google Scholar
Stortz, M. (1928) Die sekund aren authig enen Kieselsaüre in ihrer petrogenetischgeologischen Bedeutung. Monographi. Geol. Paleont., II.Google Scholar
Šucha, V., Środoń, J., Elsass, F. & McHardy, W.J. (1996) Particle shape versus coherent scattering domain in illite/smectite: Evidence from HRTEM of Dolna Ves. Clays Clay Miner. 44, 665 – 671.Google Scholar
Summerfield, M.A. (1982) Distribution, nature and probable genesis of silcretes in arid and semi-arid southern Africa. Pp. 37 – 65 in: Aridic Soils and Geomorphic Processes (Yaalon, D.H., editor). Catena supplement, 1.Google Scholar
Tessier, D. & Pédro, G. (1987) Mineralogical characterization of 2:1 clays in soils: Importance of the clay texture. Proc. Int. Clay Conf., Denver, 78– 84.Google Scholar
Thiry, M. & Milnes, A.R. (1990) Pedogenic and groundwater silcretes at Stuart Creek Opal Field, South Australia. J. Sed. Pet. 61, 11 – 127.Google Scholar
Thiry, M. & Simon-Coinçon, R. (1996) Tertiary paleoweatherings and silcretes in the southern Paris basin. Catena, 26, 1 – 26.CrossRefGoogle Scholar
Veblen, D.R., Guthrie, G.D. Jr., Livi, K.J.T. & Reynolds, R.C. Jr. (1990) High-resolution electron microscopy and electron diffraction of mixed-layer illite/smectite: experimental results. Clays Clay Miner. 38, 1– 13.CrossRefGoogle Scholar
Withers, R.L., Thompson, J.G., Xiao, Y. & Kirkpatrick, R.J. (1994) An electron diffraction study of the polymorphs of SiO2-tridymite. Phys. Chem. Miner. 21, 421 – 433.Google Scholar
Woolnough, W.G. (1927) Presidential address. Part 1: The chemical criteria of peneplanation. Part 2: The duricrusts of Australia. J. Proc. R. Soc. N.S.W., Sydney, 61, 1– 53.Google Scholar