Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T09:44:17.518Z Has data issue: false hasContentIssue false

Desordre a courte distance dans les phases transitoires resultant de l'activation thermique des montmorillonites

Published online by Cambridge University Press:  09 July 2018

A. Delmastro
Affiliation:
Politecnico di Torino, Dipartimento di Scienza dei Materiali e Ingegnieria Chimica, Corso Duca degli Abruzzi, 24 10129 Torino, Italia
A. Bachiorrini
Affiliation:
Politecnico di Torino, Dipartimento di Scienza dei Materiali e Ingegnieria Chimica, Corso Duca degli Abruzzi, 24 10129 Torino, Italia
M. Murat
Affiliation:
Politecnico di Torino, Dipartimento di Scienza dei Materiali e Ingegnieria Chimica, Corso Duca degli Abruzzi, 24 10129 Torino, Italia

Résumé

Des phases transitoires ont été préparées par activation thermique de deux montmorillonites, l'une calcique et l'autre sodique, dans le domaine de température 650–950°C, puis étudiées par spectroscopie infrarouge. Le coefficient de désordre à courte distance, défini à partir de l'élargissement et l'intensité de certaines bandes caracteristiques, présente ses valeurs maximales avec les phases transitoires obtenues à 800°C et 820–850°C respectivement pour la couche de silice et la couche d'alumine. Ce résultat a pu être corrélé à plusieurs données expérimentales concernant la cinétique de dissolution de ces phases transitoires dans l'acide fluorhydrique dilué ou dans des solutions saturées d'hydroxyde de calcium. En outre, l'accroissement particulièrement marqué du désordre à courte distance mis en évidence au niveau de la transition V→IV de la coordinance de l'aluminium, confirme l'hypothèses émise antérieurement par d'autres auteurs pour expliquer le troisième effet endothermique de faible intensité observé sur les courbes ATD des montmorillonites entre 800° et 900°C.

Abstract

Abstract

Transitory phases have been prepared by thermal activation of Ca- and Na-montmorillonites from 650 to 950°C, and investigated by IR spectroscopy. The short-range disorder index, defined from both the broadening and the intensity of characteristic bands, reaches its maximum value with transitory phases obtained at 800°C and 820–850°C for the silica layer and the alumina one, respectively. This result has been correlated with data dealing with the dissolution of transitory phases either in dilute hydrofluoric acid or in a saturated calcium hydroxide solution. In addition, the particularly large increase in short-range disorder observed when the Al(V)→Al(IV) transition occurs, experimentally confirms a previous hypothesis to explain the third endothermic effect observed on the DTA curve of montmorillonite between 800° and 900°C.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliographie

Bachiorrini, A. & Murat, M. (1986) Spectroscopie d'absorption infrarouge appliquee a la caracterisation de l'état d'amorphisation de la metakaolinite. C.R. Acad. Sci. 303, Sér II, 17831786.Google Scholar
Bachiorrini, A. & Murat, M. (1988) Coefficient de desordre a courte distance et reactivite de quelques solides mineraux. Eur. J. Solid State Inorg. Chem., 25, 91–110.Google Scholar
Bonhomme, J. (1955) Contribution a Tanalyse quantitative par les spectres d^bsorption infrarouge des poudres. II. Etude experimentale. Spectrochim. Acta, 7, 32–44.Google Scholar
Brindley, G.W. & Nakahira, M. (1959) The kaolinite-mullite reaction series. II. Metakaolin. J. Am. Ceram. Soc., 42, 314–318.Google Scholar
Calvet, R. & Prost, R. (1971) Cation migration into empty octahedral sites and surface properties of clays. Clays Clay Miner., 19, 175–186.Google Scholar
Driouche, M. (1987) Caracterisation des aluminosilicates par dissolution dans I'acide fluorhydrique dilue. Etude par methode conductimetrique. These de Doctorat, Inst. Nat. des Sci. Appl. de Lyon, France.Google Scholar
Duyckaerts, G. (1955) Contribution a l’analyse quantitative par les spectres d’absorption infrarouge des poudres. I. Examen theorique de la question. Spectrochim. Acta, 7, 25–31.Google Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals, pp. 87110. Mineralogical Society, London.Google Scholar
Farmer, V.C. (1974b) Ibid. p. 357.Google Scholar
Farmer, V.C. & Russell, J.D. (1964) The infra-red spectra of layer silicates. Spectrochim. Acta, 20, 1149–1173.Google Scholar
Farmer, V.C. & Russell, J.D. (1967) Infrared absorption spectrometry in clay studies. Clays Clay Miner., 15, 121–142.Google Scholar
Gniewek, J. (1987) Reactivite des montmorillonites calcinees. Utilisation en Genie Civil. These de Doctorat es- Sciences, Inst. Nat. des Sci. Appl. et Universite Claude-Bernard Lyon I, France.Google Scholar
Greene-Kelly, R. (1957) The montmorillonite minerals (smectites). Pp. 140164 in: The Differential Thermal Investigation of Clays. (Mackenzie, R.C., editor). Mineralogical Society, London.Google Scholar
Grim, R.E. & Kulbicki, G. (1957) Etude aux rayons X des reactions des mineraux argileux a haute temperature. Bull. Soc. Fr. Ceram., 36, 21–28.Google Scholar
Heller, L., Farmer, V.C., Mackenzie, R.C., Mitchell, B.D. & Taylor, H.F.W. (1962) The dehydroxylation and rehydroxylation of triphormic dioctahedral clay minerals. Clay Min. Bull., 5, 56–72.CrossRefGoogle Scholar
Lemaitre, J., Leonard, A.J. & Delmon, B. (1982) Le mecanisme de la transformation thermique de la metakaolinite. Bull. Min. 105, 501–507.CrossRefGoogle Scholar
Mackenzie, R.C. (1970) Differential Thermal Analysis, Vol. 1, p. 506. Academic Press, London & New York.Google Scholar
Murat, M., Ambroise, J., Pera, J. & Bastide, J. (1984) Influence des caracteristiques cristallochimiques sur les proprietes pouzzolaniques des mineraux argileux thermiquement actives. C.R. Acad. Soc. 199, Ser II, 11791181.Google Scholar
Murat, M. & Driouche, M. (1988a) Chemical reactivity of thermally activated clay minerals. Estimation by dissolution in hydrofluoric acid. Cem. Concr. Res., 18, 221–228.Google Scholar
Murat, M. & Driouche, M. (1988b) Conductimetric investigations on the dissolution of metakaolinite in dilute hydrofluoric acid. Structural implications. Clay Miner., 23, 55–67.Google Scholar
Russell, J.D. & Farmer, V.C. (1964) Infra-red spectroscopy study of the dehydration of montmorillonite and saponite. Clay Min. Bull., 5, 443–464.CrossRefGoogle Scholar
Sabatier, G. (1955) Cinetique de deshydration de quelques silicates. J. Chim. Phys., Phys. Biol, Fr., 52,60-64.Google Scholar
Stubican, V. & Roy, R. (1961) A new approach to assignment of infrared absorption bands in layer-structure silicates. Z. Krist. 115, 200–214.Google Scholar
Tarte, P. (1965) Etude experimentale et interpretation du spectre infrarouge des silicates et des germanates. Application a des problemes structuraux relatifs a Tetat solide. Acad. Roy. Belg. Cl Sc. Mem., XXXV, Fasc. 4.Google Scholar
Wardle, R. & Brindley, G.W. (1972) The crystal structure of pyrophyllite, ITc, and of its dehydroxylate. Am. Miner., 57, 732–750.Google Scholar