Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-20T20:39:02.679Z Has data issue: true hasContentIssue false

Climatic significance of clay minerals in Cenozoic marine and lacustrine sediments

Published online by Cambridge University Press:  18 September 2024

Nathalie Fagel*
Affiliation:
Laboratory AGEs (‘Argiles, Géochimie et Environnement sédimentaires’), Département de Géologie, Université de Liège, Liège, Belgium

Abstract

In sediments, clay minerals are mainly detrital. Formed by continental weathering, they are carried by surface transport predominantly by rivers, glaciers and, to a lesser extent, winds to the adjacent sedimentary basins and then are redistributed by oceanic currents. In a sedimentary core, the variability in the clay mineral assemblages reflects either variable physical and chemical weathering conditions in the watershed, typically with a significant link to climatic conditions, or changes in the mineral source, the latter being associated with various transport agents. When different sources are involved, a combination of mineralogical and geochemical proxies allows us to trace the detrital provenance, but they also indirectly provide valuable information on transport pathways and palaeocurrents. This manuscript reviews several examples from the literature and ongoing research on clay mineral variability in marine or lacustrine sedimentary records and interprets them in terms of: (1) climate control at different timescales, from the Neogene to the Quaternary; and (2) transport paths. Examples are selected to review the various clay-derived proxies in existence.

Type
Review Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Javier Cuadros

References

References

Adkins, J.F., Boyle, E.A. & Keigwin, L.D. (1995) Sediment flux variations over the past 30 000 years at the Bermuda Rise. Eos Transactions, 76, F282.Google Scholar
Alt, J.C. & Jiang, WT (1991) Hydrothermally precipitated mixed-layer illite–smectite in recent massive sulfide deposits from the sea floor. Geology, 19, 570573.Google Scholar
Andrews, J.T., MacLean, B., Kerwin, M., Manley, W., Jennings, A.E. & Hall, F. (1995) Final stages in the collapse of the Laurentide icesheet, Hudson Strait, Canada, NWT: 14C AMS dates, seismic stratigraphy, and magnetic susceptibility logs. Quaternary Research, 14, 9831004.Google Scholar
Anselmetti, F.S., Ariztegui, D., Hodell, D.A., Hillesheim, M.B., Brenner, M., Gilli, A. et al. (2006) Late Quaternary climate-induced lake level variations in Lake Peten Itza, Guatemala, inferred from seismic stratigraphic analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 230, 5269.Google Scholar
Aoki, S., Kohyama, N. & lshizuka, T. (1991) Sedimentary history and chemical characteristics of clay minerals in cores from the distal part of the Bengal Fan (ODP 116). Marine Geology, 99, 175185.Google Scholar
Bamford, M.K., Brigitte Senut, B. & Pickford, M. (2013) Fossil leaves from Lukeino, a 6-million-year old formation in the Baringo Basin, Kenya. Geobios, 46, 253272.Google Scholar
Barker, S., Knorr, G., Vautravers, M., Diz, P. & Skinner, L.C. (2010) Extreme deepening of the Atlantic overturning circulation during deglaciation. Nature Geosciences, 3, 567571.Google Scholar
BDP-93 End-Members (1995) Results of the first drilled borehole at Lake Baikal near the Buguldeika Isthmus. Russian Geology and Geophysics, 36, 332 [in Russian].Google Scholar
Beaufort, L. (1996) Dynamics of the monsoon in the equatorial Indian Ocean over the last 260,000 years. Quaternary International, 31, 1318.Google Scholar
Berger, A. (1977). Support of the astronomical theory of climate change. Nature, 269, 4445.Google Scholar
Berger, A. (2012) A brief history of the astronomical theories of paleoclimates. Pp. 107129 in: Climate Change: Inferences From Paleoclimate and Regional Aspects (Berger, A., Mesinger, F. & Sijacki, D., editors). Springer, Vienna, Austria.Google Scholar
Bergmann, J., Friedel, P. & Kleeberg, R. (1998) BGMN – a new fundamental parameter-based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations. CPD Newsletter, 20, 58.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. GSA Bulletin, 76, 803832.Google Scholar
Bish, D.L. & Chipera, S.J. (1988) Problems and solutions in quantitative analysis of complex mixtures by X-ray powder diffraction. Advances in X-Ray Analysis, 31, 295308.Google Scholar
Blackman, R.B. & Tuckey, G.W. (1958) The Measurement of Power Spectra. Dover Publications, Inc., New York, NY, USA, 190 pp.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W. et al. (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 21302136.Google Scholar
Bonnefille, R., Potts, R., Chalie, F., Jolly, D. & Peyron, O. (2004) High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis. Proceedings of the National Academy of Sciences of the United States of America, 101, 1212512129.Google Scholar
Boski, T., Pessoa, J., Pedro, P., Thorez, J., Dias, J.M.A. & Hall, I.R. (1998) Factors governing abundance of hydrolyzable amino acids in the sediments from the N.W. European Continental Margin (47–50°N). Progress in Oceanography, 42, 145164.Google Scholar
Boulay, S., Colin, C., Trentesaux, A., Frank, N. & Liu, Z. (2005) Sediment sources and East Asian monsoon intensity over the last 450 ky. Mineralogical and geochemical investigations on South China Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 260277.Google Scholar
Boulay, S., Colin, C., Trentesaux, A., Pluquet, F., Bertaux, J., Blamart, D. et al. (2003) Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144). Pp. 1–21 in: Proceedings of the Ocean Drilling Program, Scientific Results (Prell, W.L., Wang, P., Blum, P., Rea, D.K. & Clemens, S.C., editors), 184, 121. [Online]. Retrieved from: http://www-odp.tamu.edu/publications/184_SR/VOLUME/CHAPTERS/211.PDFGoogle Scholar
Bouquillon, A., Chamley, H. & Frohlich, F. (1989) Sédimentation argileuse au Cénozoïque supérieur dans l'Océan Indien nord-oriental. Oceanologica Acta, 12, 133147.Google Scholar
Bouquillon, A., France-Lanord, C., Michard, A. & Tiercelin, J.-J. (1990) Sedimentology and isotopic chemistry of the Bengal Fan sediments: the denudation of the Himalaya. Pp. 4358 in: Proceedings of the Ocean Drilling Program, Scientific Results (Cochran, J.R., Stow, D.A.V., Auroux, C., Amano, K., Balson, P.S. & Boulègue, J.J. et al., editors), 116. Ocean Drilling Program, College Station, TX, USA.Google Scholar
Bout-Roumazeilles, V. (1995) Relations entre les variabilités minéralogiques et climatiques enregistrées dans les sédiments de l'Atlantique nord pendant les huit derniers stades glaciaires-interglaciaires. PhD thesis, Université de Lille I, Lille, France, 280 pp.Google Scholar
Bout-Roumazeilles, V., Combourieu Nebout, N., Peyron, O., Cortijo, E., Landais, A. & Masson-Delmotte, V. (2007) Connection between South Mediterranean climate and North African atmospheric circulation during the last 50,000 yr BP North Atlantic cold events. Quaternary Science Reviews, 26, 31973215.Google Scholar
Boyle, E.A. (1995) Last Glacial Maximum North Atlantic Deep Water: on, off or somewhere in between? Philosophical Transactions of the Royal Society of London, Series A, 348, 243253.Google Scholar
Boyle, J.F. (2004) Inorganic geochemical methods in paleolimnology. Pp. 83141 in: Tracking Environmental Change Using Lake Sediments. Physical and Geochemical Methods, vol. 2 (Last, W.M. & Smol, J.P., editors). Kluwer Academic Publ., Dordrecht, The Netherlands.Google Scholar
Brass, G.W. & Raman, C.V. (1990) Clay mineralogy of sediments from the Bengal Fan. Pp. 3541 in: Proceedings of the Ocean Drilling Program, Scientific Results (Cochran, J.R., Stow, D.A.V., Auroux, C., Amano, K., Balson, P.S. & Boulègue, J.J. et al., editors), 116. Ocean Drilling Program, College Station, TX, USA.Google Scholar
Broecker, W. (1991) The great ocean conveyor belt. Oceanography, 4, 7989.Google Scholar
Broecker, W.S. & Denton, G.H. (1989). The role of ocean–atmosphere reorganisation in glacial cycle. Geochimica Cosmochimica Acta, 53, 6389.Google Scholar
Brown, G. & Brindley, G.W. (1980) X-ray diffraction procedures for clay mineral identification. Pp. 305359 in: Crystal Structures of Clay Minerals and Their X-Ray Identification (Brindley, G.W. & Brown, G., editors). Mineralogical Society, London, UK.Google Scholar
Butler, B. & Hillier, S. (2020) powdR: full pattern summation of X-Ray powder diffraction data. R package version 1.2.4. Retrieved from: https://CRAN.R-project.org/package=powdRGoogle Scholar
Butler, B.M. & Hillier, S. (2021) Automated full pattern summation of X-ray powder diffraction data for high-throughput quantification of clay-bearing mixtures. Clays and Clay Minerals, 69, 3851.Google Scholar
Cagatay, M.N., Keigwin, L.D., Okay, N., Sari, E. & Algan, O. (2002) Variability of clay-mineral composition on Carolina Slope (NW Atlantic) during marine isotope stages 1–3 and its paleoceanographic significance. Marine Geology, 189, 163174.Google Scholar
Campisano, C., Cohen, A.S., Arrowsmith, J.R. & Asrat, A. (1997) The Hominin Sites and Paleolakes Drilling Project: high-resolution paleoclimate records from the East African Rift System and their implications for understanding the environmental context of hominin evolution. PaleoAnthropology, 143.Google Scholar
Campisano, C., Cohen, A.S., Arrowsmith, J.R., Asrat, A., Behrensmeyer, A.K., Brown, E.T. et al. (2017) The hominin sites and Paleolakes Drilling Project: high-resolution paleoclimate records from the East African Rift System and their implications for understanding the environmental context of hominin evolution. Paleoanthropology, 2017, 143.Google Scholar
Casetou-Gustafson, S., Hillier, S., Akselssond, C., Simonsson, M., Stendahl, J. & Olsson, B.A. (2018) Comparison of measured (XRPD) and modeled (A2M) soil mineralogies: a study of some Swedish forest soils in the context of weathering rate predictions. Geoderma, 310, 7788.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin, Germany, 623 pp.Google Scholar
Chandler, M.A., Rind, D. & Ruedy, R. (1992) Pangaean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate. GSA Bulletin, 104, 543559.Google Scholar
Channell, J.E.T. (1999) Geomagnetic intensity and directional secular variation at Ocean Drilling Program (ODP) site 984 (Bjorn Drift) since 500 ka: comparison with ODP983 (Gardar Drift). Journal of Geophysical Research, B104, 2293722951.Google Scholar
Chen, P.Y. (1978) Minerals in bottom sediments of the South China Sea. GSA Bulletin, 89, 211222.Google Scholar
Chipera, S.J. & Bish, D.L. (2002) FULLPAT: a full-pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns. Journal of Applied Crystallography, 35, 744749.Google Scholar
Clemens, S.C. & Prell, W.L. (1991) One million year record of summer monsoon winds and continental aridity from the Owen Ridge (Site 722), northwest Arabian Sea. Pp. 365388 in: Proceedings of the Ocean Drilling Program. Scientific Results (Prell, W.L., Niitsuma, N., Emeis, K.-C., Al-Sulaiman, Z.K., Al-Tobbah, A.N.K., Anderson, D.M. et al., editors), 117. Ocean Drilling Program, College Station, TX, USA.Google Scholar
Clemens, S.C., Prell, W.L., Murray, D., Shimmield, G. & Weedon, G. (1991) Forcing mechanisms of the Indian Ocean monsoon. Nature, 353, 720725.Google Scholar
Cohen, A., Arrowsmith, R., Behrensmeyer, A.K., Campisano, C., Feibel, C., Fisseha, S., et al. (2009) Understanding paleoclimate and human evolution through the Hominin Sites and Paleolakes Drilling Project. Scientific Drilling, 8, 6065.Google Scholar
Cohen, A., Campisano, C., Arrowsmith, R. & Asrat, A. (2016) The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from Eastern African Rift lake deposits. Scientific Drilling, 21, 116.Google Scholar
Colin, C., Turpin, L., Bertaux, J., Desprairies, A. & Kissel, C. (1999) Erosional history of the Himalayan and Burman ranges during the last two glacial–interglacial cycles. Earth Planetary Sciences Letters, 171, 647660.Google Scholar
Curray, J.R., Emmel, F.J. & Moore, D.G. (2003) The Bengal Fan: morphology, geometry, stratigraphy, history and processes. Marine Petroleum Geology, 19, 11911223.Google Scholar
Darby, D.A. (1975) Kaolinite and other clay minerals in Arctic Ocean sediments. Journal of Sedimentary Research, 45, 272279.Google Scholar
De Menocal, P., Bloemendal, J. & King, J. (1991) A rock-magnetic record of monsoonal dust deposition to the Arabian Sea: evidence for a shift in the mode of deposition at 2.4 Ma. Pp. 389407 in: Proceedings of the Ocean Drilling Program. Scientific Results (Prell, W.L., Niitsuma, N., Emeis, K.-C., Al-Sulaiman, Z.K., Al-Tobbah, A.N.K., Anderson, D.M. et al., editors), 117. Ocean Drilling Program, College Station, TX, USA.Google Scholar
Debrabant, P., Fagel, N., Chamley, H., Bout, V. & Coulet, J.P. (1993) Neogene to Quaternary clay mineral fluxes in the Central Indian basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 103, 117131.Google Scholar
Debrabant, P., Krissek, L., Bouquillon, A. & Chamley, H. (1991) Clay mineralogy of Neogene sediments of the western Arabian Sea: mineral abundances and paleoenvironmental implications. Pp. 183196 in: Proceedings of the Ocean Drilling Program. Scientific Results (Prell, W.L., Niitsuma, N., Emeis, K.-C., Al-Sulaiman, Z.K., Al-Tobbah, A.N.K., Anderson, D.M. et al., editors), 117. Ocean Drilling Program, College Station, TX, USA.Google Scholar
Deconinck, J.F. & Vanderaveroet, P. (1996) Eocene to Pleistocene clay mineral sedimentation off New Jersey, western North Atlantic (ODP Leg 150, Sites 903 and 905). Pp. 147170 in: Proceedings of the Ocean Drilling Program. Scientific Results (Mountain, G.S., Miller, K.G., Blum, P., Poag, C.W. & Twichell, D.C., editors), 150. Ocean Drilling Program, College Station, TX, USA.Google Scholar
Demory, F., Nowaczyk, N.R., Witt, A. & Oberhänsli, H. (2005) High-resolution magnetostratigraphy of late Quaternary sediments from Lake Baikal, Siberia: timing of intracontinental paleoclimatic responses. Global and Planetary Change, 46, 145166.Google Scholar
Deocampo, D.M., Behrensmeyer, A.K. & Potts, R. (2010) Ultrafine clay minerals of the Pleistocene Olorgesailie Formation, southern Kenya Rift: diagenesis and paleoenvironments of early hominins. Clays and Clay Minerals, 58, 294310.Google Scholar
Dera, G., Pellenard, P., Neige, P., Deconinck, J.F., Pucéat, E. & Dommergues, J.L. (2009) Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons, Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 3951.Google Scholar
Dericquebourg, P. (2016) Les environnements sédimentaires néogènes enregistreurs des fluctuations climatiques associées aux premiers hominidés est-africains. PhD thesis, Université de Liège, Liège, Belgium, 178 pp.Google Scholar
Dericquebourg, P., Person, A., Segalen, L., Pickford, M., Senut, B. & Fagel, M. (2015) Environmental significance of Upper Miocene phosphorites at hominid sites in the Lukeino Formation (Tugen Hills, Kenya). Sedimentary Geology, 327, 4354.Google Scholar
Derry, L.A. & France-Lanord, C. (1996) Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth Planetary Sciences Letters, 142, 5974.Google Scholar
Dickson, R.R. & Brown, J. (1994) The production of North Atlantic Deep Water: sources, rates, and pathways. Journal of Geophysical Research, 99, 1231912341.Google Scholar
Dieckmann, B., Kuhn, G. & Mackensen, A., Petschick, R., Fütterer, D.K., Gersonde, R. et al. (1999) Kaolinite and chlorite as tracers of modern and Late Quaternary Deep Water Circulation in the South Atlantic and the adjoining Southern Ocean. Pp. 285313 in: Use of Proxies in Paleoceanography – Examples from the South Atlantic (Fischer, G. & Wefer, G., editors). Springer, Berlin, Germany.Google Scholar
Dieckmann, B., Petschick, R., Gingele, F.X., Fütterer, D.K., Abelmann, A., Brathauer, U. et al. (1996) Clay mineral fluctuations in Late Quaternary sediments of the southeastern South Atlantic: implications for past changes of deepwater advection. Pp. 621644 in: The South Atlantic: Present and Past Circulation, vol. 118 (Wefer, G., Berger, W.H., Siedler, G. & Webb, D., editors). Springer-Verlag, Berlin, Germany.Google Scholar
Dietel, J., Ufer, K., Kaufhold, S. & Dohrmann, R. (2019) Crystal structure model development for soil clay minerals – II. Quantification and characterization of hydroxy-interlayered smectite (HIS) using the Rietveld refinement technique. Geoderma, 347, 112.Google Scholar
Dunn, D.A., Patrick, D.M. & Cooley, U. (1987) Cenozoic clay mineralogy of Sites 604 and 605, New Jersey Transect, Deep Sea Drilling Project, Leg 93. Pp. 10231037 in: Initial Reports of the Deep Sea Drilling Project, vol. 93 (Van Hinte, J.E., Wise, S.W. Jr, et al., editors). US Government Printing Office, Washington, DC, USA.Google Scholar
Dunoyer de Segonzac, G. (1969) Les minéraux argileux dans la diagenèse. Passage au métamorpisme. Mémoire Service Carte géologique Alsace-Lorraine, 29, 1320.Google Scholar
Eberl, D.D. (2003) User's Guide to RockJock - A Program for Determining Quantitative Mineralogy from Powder X-Ray Diffraction Data. US Geological Survey Open-File Report 2003-78. US Geological Survey, Reston, VA, USA, 47 pp.Google Scholar
Egli, M., Merkli, C., Sartori, G., Mirabella, A. & Plötze, M. (2008). Weathering, mineralogical evolution and soil organic matter along a Holocene soil toposequence developed on carbonate-rich materials. Geomorphology, 97, 675696.Google Scholar
Fagel, N. (2007) Marine clay minerals, deep circulation and climate. Pp. 139184 in: Paleoceanography of Late Cenozoic, Vol. 1: Methods (Hillaire-Marcel, C. & de Vernal, A., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Fagel, N. & Boës, X. (2008) Clay-mineral record in Lake Baikal sediments: the Holocene and Late Glacial transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 230243.Google Scholar
Fagel, N. & Hillaire-Marcel, C. (2006) Glacial/interglacial instabilities of the Western Boundary Undercurrent during the last 360 kyr from Sm/Nd ratios of the sedimentary clay-size fractions at ODP Site 646 (Labrador Sea). Marine Geology, 232, 8799.Google Scholar
Fagel, N. & Mackay, A. (2008) Weathering in the Lake Baikal watershed during the Kazantsevo (Eemian) interglacial: evidence from the lacustrine clay record. Paleogeography, Paleoecology, Paleoclimatology, 259, 230343.Google Scholar
Fagel, N., André, L., Chamley, H., Debrabant, P. & Jolivet, L. (1992a) Clay sedimentation in the Japan Sea since the Early Miocene: influence of source-rock and hydrothermal activity. Sedimentary Geology, 80, 2740.Google Scholar
Fagel, N., André, L. & Debrabant, P. (1997a) The geochemistry of pelagic clays: detrital versus non-detrital signals? Geochimica et Cosmochimica Acta, 61, 9891008.Google Scholar
Fagel, N., Boski, T., Likhoshway, L. & Oberhaensli, H. (2003) Late Quaternary clay mineral record in Central Siberia Lake Baikal (Academician Ridge, Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology, 193, 159179.Google Scholar
Fagel, N., Debrabant, P. & André, L. (1994) Clay supplies in the Central Indian Basin since the Late Miocene: climatic or tectonic control? Marine Geology, 122, 151172.Google Scholar
Fagel, N., Debrabant, P., De Menocal, P. & Demoulin, B. (1992b) Utilisation des minéraux sédimentaires argileux pour la reconstitution des variations paléoclimatiques à court terme en Mer d'Arabie. Oceanologica Acta, 15, 125136 [in French].Google Scholar
Fagel, N., Hillaire-Marcel, C., Humblet, M., Brasseur, R., Weis, D. & Stevenson, R. (2004) Nd and Pb isotope signatures of the clay-size fraction of Labrador Sea sediments during the Holocene: Implications for the inception of the modern deep circulation pattern. Paleoceanography and Paleoclimatology, 19, 10.1029/2003PA000993.Google Scholar
Fagel, N., Hillaire-Marcel, C. & Robert, C. (1997b) Changes in the Western Boundary Undercurrent outflow since the Last Glacial Maximum, from smectite/illite ratios in deep Labrador Sea sediments. Paleoceanography and Paleoclimatology, 12, 7996.Google Scholar
Fagel, N., Innocent, C., Gariépy, C. & Hillaire-Marcel, C. (2002) Sources of Labrador Sea sediments since the last glacial maximum inferred from Nd-Pb isotopes. Geochimica et Cosmochimica Acta, 66, 25692581.Google Scholar
Fagel, N., Innocent, C., Stevenson, R.K., Hillaire-Marcel, C. (1999) Nd isotopes as tracers of paleocurrents: a high resolution study of Late Quaternary sediments from the Labrador Sea. Paleoceanography and Paleoclimatology, 14, 777788.Google Scholar
Fagel, N., Israde-Alcantara, I., Safaierad, R., Rantala, M., Schmidt, S., Lepoint, G. et al. (2024) Environmental significance of kaolinite variability over the last centuries in crater lake sediments from Central Mexico. Applied Clay Science, 247, 107211.Google Scholar
Fagel, N., Not, C., Gueibe, J., Mattielli, N. & Bazhenova, E. (2014) Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the northern Mendeleev Ridge. Quaternary Science Review, 92, 140154.Google Scholar
Fagel, N., Robert, C., Hillaire-Marcel, C. (1996) Clay mineral signature of the North Atlantic Boundary Undercurrent. Marine Geology, 130, 1928.Google Scholar
Fagel, N., Thamó-Bózsó, E. & Heim, B. (2007) Mineralogical signatures of Lake Baikal sediments: sources of sediment supplies through Late Quaternary. Sedimentary Geology, 194, 3759.Google Scholar
Fletcher, B., Brentnall, S., Anderson, C., Berner, R.A. & Beerling, D.J. (2008) Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nature Geoscience, 1, 4348.Google Scholar
Foerster, V., Asrat, A., Bronk Ramsey, C., Brown, E.T., Chapot, M.S., Deion, A. et al. (2022) Pleistocene climate variability in eastern Africa influenced hominin evolution. Nature Geoscience, 15, 805811.Google Scholar
Foerster, V., Deocampo, D.M., Asrat, A. & Günter, C. (2018) Towards an understanding of climate proxy formation in the Chew Bahir basin, southern Ethiopian Rift. Palaeogeography, Palaeoclimatology, Palaeoecology, 501, 111123.Google Scholar
Foerster, V., Junginger, A., Langkamp, O., Gebru, T., Asrat, A., Umer, M. et al. (2012) Climatic change recorded in the sediments of the Chew Bahir basin, southern Ethiopia, during the last 45,000 years. Quaternary International, 274, 2537.Google Scholar
Foerster, V., Vogelsang, R., Junginger, A., Asrat, A., Lamb, H.F., Schaebitz, F. & Trauth, M.H. (2015) Environmental change and human occupation of southern Ethiopia and northern Kenya during the last 20,000 years. Quaternary Science Reviews, 129, 333340.Google Scholar
Foucault, A. & Mélières, F. (2000) Palaeoclimatic cyclicity in central Mediterranean Pliocene sediments: the mineralogical signal. Palaeogeography, Palaeoclimatology, Palaeoecology, 158, 311323.Google Scholar
France-Lanord, C., Derry, L. & Michard, A. (1993) Evolution of the Himalaya since Miocene time: isotopic and sedimentological evidence from the Bengal Fan. Geological Society, London, Special Publications, 74, 603621.Google Scholar
Galasy, G.I. (editor) (1993) Baikal Atlas. Russian Academy of Science, Siberian Branch. Roskartografiya, Moscow, Russia, 160 pp. [in Russian].Google Scholar
Gates-Rector, S. & Blanton, T. (2019) The Powder Diffraction File: a quality materials characterization database. Powder Diffraction, 34, 352360.Google Scholar
Gingele, F. & Schmiedl, G. (1999) Comparison of independent proxies on deep water advection in the southeast Atlantic off Namibia. South African Journal of Marine Science, 21, 181190.Google Scholar
Gingele, F.X., Schmieder, F., von Dobeneck, T., Petschick, R. & Rühlemann, C. (1999) Terrigenous flux in the Rio Grande Rise area during the past 1500 ka: evidence of deep water advection or rapid response to continental rainfall patterns? Paleoceanography and Paleoclimatology, 14, 8495.Google Scholar
Godet, A., Bodin, S., Adatte, T. & Föllmi, K.B. et al. (2008) Platform induced clay-mineral fractionation along a northern Tethyan basin-platform transect: implications for the interpretation of Early Cretaceous climate change (Late Hauterivian–Early Aptian). Cretaceous Research, 29, 830847.Google Scholar
Grachev, M.A., Vorobieva, S.S. & Likoshway, E.V. (1998) A high-resolution diatom record of the paleoclimates of East Siberia for the last 2,5 My from Lake Baikal. Quaternary Science Reviews, 17, 11011106.Google Scholar
Griffin, J.J. & Goldberg, E.D. (1963) Clay mineral distribution in the Pacific Ocean. Pp. 728741 in: The Sea (Hill, M.N., editor). Interscience, New York, NY, USA.Google Scholar
Griffin, J.J., Windom, H. & Goldberg, E.D. (1968) The distribution of clay minerals in the world ocean. Deep Sea Research, 15, 433459.Google Scholar
Han, T.G., Préat, A., Chamley, H., Deconinck, J.-F. & Mansy, J.-L. (2000) Palaeozoic clay mineral sedimentation and diagenesis in the Dinant and Avesnes basins (Belgium, France): relationships with Variscan tectonism. Sedimentary Geology, 136, 217238.Google Scholar
Harms, U., Koeberl, C. & Zoback, M.C. (editors) (2007) Continental Scientific Drilling: A Decade of Progress, and Challenges for the Future. Springer-Verlag, Berlin, Germany, 366 pp.Google Scholar
Hays, J.D., Imbrie, J. & Shackleton, N.J. (1976) Variations in Earth's orbit pacemaker of ice ages. Science, 194, 11211132.Google Scholar
Hesselbo, S.P., Bjerrum, C.J., Hinnov, L.A., MacNiocaill, C., Miller, K., Riding, J. et al. (2013) Mochras borehole revisited: a new global standard for Early Jurassic Earth history. Scientific Drilling, 16, 8191.Google Scholar
Hesselbo, S.P., Hudson, A.J.L., Huggett, J.M., Leng, M.J., Riding, J.B. & Ullmann, C.V. (2020) Palynological, geochemical, and mineralogical characteristics of the Early Jurassic Liasidium Event in the Cleveland Basin, Yorkshire, UK. Newsletters on Stratigraphy, 53, 191211.Google Scholar
Hillaire-Marcel, C., de Vernal, A., Bilodeau, C. & Wu, G. (1994) Isotope stratigraphy, sedimentation rates, deep circulation, and carbonate events in the Labrador Sea during the last 200 ka. Canadian Journal of Earth Sciences, 31, 139158.Google Scholar
Hillier, S. (1999) Use of an air brush to spray dry samples for X-ray powder diffraction. Clay Minerals, 34, 127135.Google Scholar
Hillier, S. (2000) Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals, 35, 291302.Google Scholar
Hillier, S., Wilson, M.J. & Merriman, R.J. (2006) Clay mineralogy of the Old Red Sandstone and Devonian sedimentary rocks of Wales, Scotland and England. Clay Minerals, 41, 433471.Google Scholar
Holtzapffel, T. (1985) Les minéraux argileux, préparation, analyse diffractométrique et détermination. Société Géologique du Nord, Publication 12. Société Géologique du Nord, Lille, France.Google Scholar
Horiuchi, K., Minoura, K., Hoshino, K., Oda, T., Nakamura, T. & Kawai, T. (2000) Palaeoenvironmental history of Lake Baikal during the last 23000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 157, 95108.Google Scholar
Huang, C., Hesselbo, S.P. & Hinnov, L. (2010) Astrochronology of the late Jurassic Kimmeridge Clay (Dorset, England) and implications for Earth system processes. Earth and Planetary Science Letters, 289, 242255.Google Scholar
Hutchinson, D.R., Golmshtok, A.J., Zonenshain, L.P., Moore, T.C., Scholz, C.A. & Klitgord, K.D. (1992) Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology, 21, 589592.Google Scholar
ICDD (2016) PDF-4 + 2016 (Database). International Center for Diffraction Data, Newtown Square, PA, USA.Google Scholar
Inoue, A. (1995) Formation of clay minerals in hydrothermal environments. Pp. 268329 in: Origin and Mineralogy of Clays (Velde, B., editor). Springer, Berlin, Germany.Google Scholar
Jeans, C.V. (2006) Clay mineralogy of the Jurassic strata of the British Isles. Clay Minerals, 41, 187307.Google Scholar
Jenkins, W.M. & Watts, D.G. (1968) Spectral Analysis and Its Application. Holden-Day, San Francisco, CA, USA, 525 pp.Google Scholar
Johanson, D.C., Taieb, M. & Coppens, Y. (1982) Pliocene hominids from the Hadar Formation, Ethiopia (1973–1977): stratigraphic, chronological, and paleoenvironmental contexts, with notes on hominid morphology and systematics. American Journal of Physical Anthropology, 57, 373402.Google Scholar
Joussain, R., Colin, C., Liu, Z.F., Meynadier, L., Fournier, L., Fauquembergue, K. et al. (2016) Climatic control of sediment transport from the Himalayas to the proximal NE Bengal Fan during the last glacial–interglacial cycle. Quaternary Science Reviews, 148, 116.Google Scholar
Karabanov, E.B., Prokopenko, A.A., Williams, D.F. & Khursevich, G.K. (2000) Evidence for mid-Eemian cooling in continental climatic record from Lake Baikal. Journal of Paleolimnology, 23, 365371.Google Scholar
Kaufhold, S., Hein, M., Dohrmann, R. & Ufer, K. (2012) Quantification of the mineralogical composition of clays using FTIR spectroscopy. Vibrational Spectroscopy, 56, 2939.Google Scholar
Kemp, S.J., Merriman, R.J. & Bouch, J.E. (2005) Clay mineral reaction progress – the maturity and burial history of the Lias Group of England and Wales. Clay Minerals, 40, 4361.Google Scholar
Kennett, J.P. (1982) Marine Geology. Prentice Hall, Englewood Cliffs, NJ, USA, 813 pp.Google Scholar
Khotinsky, N.A. (1984) Holocene vegetation history. Pp. 179200 in: Late Quaternary Environments of the Soviet Union (Velichko, AA., editor). University of Minnesota Press, Minneapolis, MN, USA.Google Scholar
Kolla, V. & Rao, N.M. (1990) Sedimentary sources in the surface and near-surface sediments of the Bay of Bengal. Geo-Marine Letters, 10, 129136.Google Scholar
Kolla, V., Henderson, L. & Biscaye, P.E. (1976) Clay mineralogy and sedimentation in the western Indian Ocean. Deep Sea Research, 23, 949961.Google Scholar
Korte, C., Hesselbo, S.P., Ullmann, C., Dietl, G., Ruhl, M., Schweigert, G. & Thibault, N. (2015) Jurassic climate mode governed by ocean gateway. Nature Communication, 6, 17.Google Scholar
Krissek, L.A. & Clemens, S.C. (1991). Mineralogic variations in a Pleistocene high resolution eolian record from the Owen Ridge Western Arabian Sea (Site 722): implications for sediment source conditions and monsoon history. Pp. 197213 in: Proceedings of the Ocean Drilling Program. Scientific Results (Prell, W.L., Niitsuma, N., Emeis, K.-C., Al-Sulaiman, Z.K., Al-Tobbah, A.N.K., Anderson, D.M. et al., editors), 117. Ocean Drilling Program, College Station, TX, USA.Google Scholar
Kutzbach, J.E. (1981) Monsoon climate of the early Holocene: climate experiment with the Earth's orbital parameters for 9000 years ago. Science, 214, 5961.Google Scholar
Kuzmin, M.I., Karabanov, E.B., Kawai, T. & Williams, D. (2001) Deep drilling on Lake Baikal: main results. Russian Geology and Geophysics, 42, 834.Google Scholar
Lamy, F., Hebbeln, D. & Wefer, G. (1999) High resolution marine record of climatic change in midlatitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quaternary Research, 51, 8393.Google Scholar
Landwehrs, J., Feulner, G., Petri, S., Sames, B. & Wagreich, M. (2021) Investigating Mesozoic climate trends and sensitivities with a large ensemble of climate model simulations. Paleoceanography and Paleoclimatology, 36, e2020PA004134.Google Scholar
Laskar, J., Fienga, A., Gastineau, M. & Manche, H. (2011) La2010: a new orbital solution for the long-term motion of the Earth. Astronomy & Astrophysics, 532, A89.Google Scholar
Last, W.M. (2004) Mineralogical analysis of lake sediments. Pp. 143187 in: Tracking Environmental Change Using Lake Sediments. Physical and Geochemical Methods, vol. 2 (Last, W.M. & Smol, J.P., editors). Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Ledbetter, M.T. & Balsam, W.M. (1985) Paleoceanography of the Deep Western Boundary Undercurrrent on the North American continental margin for the past 25,000 yr. Geology, 13, 181184.Google Scholar
Li, J., Liu, S., Shi, X., Zhang, H., Fang, X., Chen, M.-T. et al. (2018) Clay minerals and Sr-Nd isotopic composition of the Bay of Bengal sediments: implications for sediment provenance and climate control since 40 ka. Quaternary International, 493, 5058.Google Scholar
Likhoshway, Y.V. (1998) Fossil endemic centric diatoms from Lake Baikal. Upper Pleistocene complexes. Pp. 613628 in: Proceedings of the 14th International Diatom Symposium 1996 (Manami, S., Idei, M. & Koizumi, I., editors). Koeltz Science Books, Koenigstein, Germany.Google Scholar
Liu, Z., Colin, C., Li, X., Zhao, Y., Tuo, S., Chen, Z. et al. (2010) Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport. Marine Geology, 277, 4860.Google Scholar
Liu, Z., Trentesaux, A., Clemens, S.C., Colin, C., Wang, P., Huang, B. & Boulay, S. (2003) Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology, 201, 133146.Google Scholar
Lomonosov, I.S., Khaustov, A.P.K., Gvozdkov, A.N. & Shpeizer, G.M. (1995) Geochemical significance of substance flows in recent sedimentation of Lake Baikal. IPPCCE Newsletter, 9, 5765.Google Scholar
Lourens, L., Hilgen, F., Laskar, J. & Wilson, D. (2005) The Neogene period. Pp. 409440 in: A Geological Timescale 2004 (Gradstein, F., Ogg, J. & Smith, A., editors). Cambridge University Press, Cambridge, UK.Google Scholar
Lucotte, M. & Hillaire-Marcel, C. (1994) Identification des grandes masses d'eau dans les mers du Labrador et d'Irminger. Canadian Journal of Earth Sciences, 31, 513.Google Scholar
Lupien, R., Uno, K., Rose, C., deRoberts, N., Hazan, C., de Menocal, P. & Polissar, P. (2023) Low-frequency orbital variations controlled climatic and environmental cycles, amplitudes, and trends in northeast Africa during the Plio-Pleistocene. Communications Earth and Environment, 4, 360.Google Scholar
Martinez, M., Pellenard, P., Deconinck, J.F., Monna, F., Riquier, L. Boulila, S., et al. (2012) An orbital floating time scale of the Hauterivian/Barremian GSSP from a magnetic susceptibility signal (Río Argos, Spain). Cretaceous Research, 36, 106115.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T. & Shackleton, N.J. (1987) Age dating and the orbital theory of the ice ages: development of a high resolution 0 to 300,000-year chronostratigraphy. Quaternary Research, 27, 129.Google Scholar
Mats, V., Khlystov, O., De Batist, M., Ceramicola, S., Lomonosova, T.K. & Klimansky, A. (2000) Evolution of the Academician Ridge Accommodation Zone in the central part of the Baikal Rift, from high-resolution reflection seismic profiling and geological field investigations. International Journal of Earth Sciences, 89, 229250.Google Scholar
McCartney, M.S. (1992) Recirculating components to the deep boundary current of the northern North Atlantic. Progress in Oceanography, 29, 283383.Google Scholar
McCarty, D.K. (2002) Quantitative mineral analysis of clay-bearing mixtures: the ‘Reynolds Cup’ contest. Committee on Powder Diffraction Newsletter, 27, 1216,Google Scholar
Melles, M., Grobe, H. & Hubberten, H.W. (1995) Mineral composition of the clay fraction in the 100 m Core BDP-93-2 from Lake Baikal – preliminary results. In: Horie, S. (Ed.), IPPCC Newsletter 9, 1722.Google Scholar
Meunier, A. (2006) Clays. Springer-Verlag, Berlin, Germany, 472 pp.Google Scholar
Meunier, A. (2007) Soil hydroxy-interlayered minerals: a re-interpretation of their crystallochemical properties. Clays and Clay Minerals, 55, 380388.Google Scholar
Meyers, S.R. (2015) The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: an inverse approach for astrochronologic testing and time scale optimization. Paleoceanography and Paleoclimatology, 30, 16251640.Google Scholar
Milliman, J.D. & Syvitski, J.P.M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, 100, 525544Google Scholar
Millot, G. (1970) Geology of Clays: Alteration, Sedimentology, Geochemistry. Springer Verlag, New York, NY, USA; Masson, Paris, France; Chapman Hill, London, UK, 429 pp.Google Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK, 332 pp.Google Scholar
Müller, J., Kasbohm, J., Oberhaensli, H., Melles, M. & Hubberten, H.W. (2000) TEM analysis of smectite–illite mixed-layer minerals of core BDP96 Hole 1: preliminary results. Pp. 90100 in: Lake Baikal: A Mirror in Time and Space for Understanding Global Change Processes (Minoura, K., editor). Elsevier, Amsterdam, The Netherlands.Google Scholar
Munier, T., Deconinck, J.F., Pellenard, P., Hesselbo, S.P., Riding, J.B., Ullmann, C.V. et al. (2021) Million-year-scale alternation of warm–humid and semi-arid periods as a mid-latitude climate mode in the Early Jurassic (late Sinemurian, Laurasian Seaway). Climate of the Past, 17, 15471566.Google Scholar
Nair, R.R., Ittekkot, V., Manganini, S.J., Ramaswamy, V., Haake, B., Degens, E.T. et al. (1989) Increased particle flux to the deep ocean related to monsoons. Nature, 338, 749751.Google Scholar
Nath, B.N., Rao, V.P. & Becker, K.P. (1989) Geochemical evidence of terrigenous influence in deep-sea sediments up to 8°S in the Central Indian Basin. Marine Geology, 87, 301313.Google Scholar
Nesje, A. & Dahl, S.O. (2000) Glaciers and Environmental Changes. Key Issues in Environmental Change. Routledge, London, UK 216 pp.Google Scholar
Omotoso, O., McCarty, D.K., Hillier, S. & Kleeberg, R. (2006) Some successful approaches to quantitative mineral analysis as revealed by the 3rd Reynolds Cup contest. Clays and Clay Minerals, 54, 748760.Google Scholar
Oppo, J., McManus, F. & Cullen, J.L. (2003) Deepwater variability in the Holocene epoch. Nature, 277, 422.Google Scholar
Peacor, D.R. (1992) Diagenesis and low-grade metamorphism of shales and slates. Pp. 335380 in: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy (Busek, P.R., editor). Mineralogical Society of America, Chantilly, VA, USA.Google Scholar
Pellenard, P. & Deconinck, J.F. (2006) Mineralogical variability of Callovo–Oxfordian clays from the Paris Basin and the Subalpine Basin. Comptes Rendus Geoscience, 338, 854866.Google Scholar
Perry, E. & Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays and Clay Minerals 18, 165178.Google Scholar
Petschick, R. (1997) Powder Diffraction Software. MacDiff [Online]. Retrieved from: http://mill2.chem.ucl.ac.uk/ccp/web-mirrors/krumm/macsoftware/macdiff/macdiff4.htmlGoogle Scholar
Petschick, R., Kuhn, G. & Gingele, F. (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Marine Geology, 130, 203229.Google Scholar
Pickford, M. (1974) Stratigraphy and paleoecology of five late Cenozoic formations in the Kenya Rift Valley. Unpublished PhD Thesis. University of London, London, UK, 219 pp.Google Scholar
Pickford, M. (1975) Miocene sediments and fossils from the northern Kenya Rift Valley. Nature, 256, 279284.Google Scholar
Pickford, M. (1978) Stratigraphy and mammalian palaeontology of the late-Miocene Lukeino Formation, Kenya. Pp. 263278 in: Geological Background to Fossil Man (Bishop, W.W., editor). Scottish Academic Press, Edinburgh, UK.Google Scholar
Pickford, M., Senut, B. & Cheboi, K. (2009) The geology and palaeobiology of the Tugen Hills, Kenya: rift tectonics, basin formation, volcanics and sedimentation. Geo-Pal Kenya, 1, 4133.Google Scholar
Piper, D.J.W. & Slatt, R.M. (1977) Late Quaternary clay mineral distribution on the eastern continental margin of Canada. GSA Bulletin, 88, 267272.Google Scholar
Prell, W.L. (1984) Monsoonal climate of the Arabian Sea during the late Quaternary: a response to changing solar radiation. Pp. 349366 in: Milankovitch and Climate (Pt. 1) (Berger, A.L., Imbrie, J., Hayse, J., Kukla, G. & Saltzman, B., editors). Reidel, D., Dordrecht, The Netherlands.Google Scholar
Prell, W.L. & Kutzbach, J.E. (1987) Monsoon variability over the past 150,000 years. Journal of Geophysical Research, 92, 84118525.Google Scholar
Prell, W.L. & Van Campo, E. (1986) Coherent response of Arabian Sea upwelling and pollen transport to late Quaternary monsoonal winds. Nature, 323, 526528.Google Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. (1986) Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, UK, 818 pp.Google Scholar
Prokopenko, A.A., Karabanov, E.B., Williams, D.F. & Khursevich, G.K. (2002) The stability and the abrupt ending of the Last Interglaciation in southeastern Siberia. Quaternary Research, 58, 5659.Google Scholar
Rateev, M.A., Gorbunova, Z.N., Lisitzyn, A.P. & Nosov, G.L. (1969) The distribution of clay minerals in the oceans. Sedimentology, 13, 2143.Google Scholar
Raven, M.D. & Self, P.G. (2017) Outcomes of 12 years of the Reynolds Cup quantitative minerals analysis round robin. Clays and Clay Minerals, 65, 122.Google Scholar
Reed, K.E. (2008) Paleoecological patterns at the Hadar hominin site, Afar Regional State, Ethiopia. Journal of Human Evolution, 54, 743768.Google Scholar
Rich, C.I. (1968) Hydroxy-interlayers in expansible layer silicates. Clays and Clay Minerals, 16, 1530.Google Scholar
Rietveld, H.M. (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica, 22, 151152.Google Scholar
Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 6571.Google Scholar
Robert, C., Diester-Haass, L. & Paturel, J. (2005) Clay mineral assemblages, siliciclastic input and paleoproductivity at ODP Site 1085 off southwest Africa: a late Miocene–early Pliocene history of Orange river discharges and Benguela current activity, and their relation to global sea level change. Marine Geology, 216, 221238.Google Scholar
Roche, D., Ségalen, L., Senut, B. & Pickford, M. (2013) Stable isotope analyses of tooth enamel carbonates of large herbivores from the Tugen Hills deposits: palaeoenvironmental context of the earliest Kenyan hominids. Earth Planetary Sciences Letters, 381, 3951.Google Scholar
Ruddiman, W.F. & McIntyre, A. (1981) Oceanic mechanisms for amplification of the 23,000 years ice volume cycle. Science, 212, 617627.Google Scholar
Ruffell, A., McKinley, J.M. & Worden, R.H. (2002) Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe. Philosophical Transactions of the Royal Society A, 360, 675693.Google Scholar
Sakai, T., Minoura, K., Soma, M., Tani, Y., Tanaka, A., Nara, F., et al. (2005) Influence of climate fluctuation on clay formation in the Baikal drainage basin. Journal of Paleolimnology, 33, 105121.Google Scholar
Sawada, Y., Pickford, M., Senut, B., Itaya, T., Hyodo, M., Miura, T. et al. (2002) The age of Orrorin tugenensis, an early hominid from the Tugen Hills, Kenya. Comptes Rendus Palevol, 1, 293303.Google Scholar
Schirrmeister, L., Siegert, C. & Kuznetsova, T. (2002) Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of northern Siberia. Quaternary International, 89, 97118.Google Scholar
Schlunegger, F. & Norton, K.P. (2015) Climate vs. tectonics: the competing roles of Late Oligocene warming and Alpine orogenesis in constructing alluvial megafan sequences in the North Alpine foreland basin. Basin Research, 27, 230245.Google Scholar
Schnyder, J., Ruffell, A., Deconinck, J.F. & Baudin, F. (2006) Conjunctive use of spectral gamma-ray logs and clay mineralogy in defining late Jurassic–early Cretaceous palaeoclimate change (Dorset, U.K.). Palaeogeography,. Palaeoclimatology, Palaeoecology, 229, 303320.Google Scholar
Senut, B., Pickford, M., Gommery, D., Mein, P., Cheboi, K. & Coppens, Y. (2001) First hominid from the Miocene (Lukeino Formation, Kenya). Comptes Rendus de l'Académie des Sciences de Paris-Series IIA, Earth and Planetary Sciences, 332, 137144.Google Scholar
Shackleton, N.J., Backmann, H.B., Zimmerman, H.B., Kent, D.V., Hall, M.A., Roberts, D.G. et al. (1984) Oxygen isotope calibration of the onsert of ice-rafteing in DSDP Site 552°: history of glaciaition in the North Atlantic region. Nature, 307, 620623.Google Scholar
Shackleton, N.J., Berger, A. & Peltier, W.R. (1990) An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 81, 251261.Google Scholar
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments. Earth Science Review, 21, 251293.Google Scholar
Snyder, R.L. & Bish, D.L. (1989) Modern Powder Diffraction. Mineralogical Society of America. Reviews in Mineralogy, 20, 101144.Google Scholar
Solotchina, E.P., Prokopenko, A.A., Vasilevsky, A.N., Gavshin, V.M., Kuzmin, M.I. & Williams, D.F. (2002) Simulation of XRD patterns as an optimal technique for studying glacial and interglacial clay mineral associations in bottom sediments of Lake Baikal. Clay Minerals, 37, 105119.Google Scholar
Srivastava, S.P., Arthur, M., Clement, B., Aksu, A., Baldauf, J., Bohrmann, G. et al. (1987) Proceedings of the Ocean Drilling Program, Initial Report, vol. 105. Ocean Drilling Program, College Station, TX, USA.Google Scholar
Srivastava, P., Parkash, B. & Pal, D.K. (1998) Clay minerals in soils as evidence of Holocene climatic central Indo-Gangetic Plains, north-central India. Quaternary Research, 50, 230239.Google Scholar
Środoń J. (2003) Identification and quantitative analysis of clay minerals. Pp. 765787 in: Handbook of Clay Science (Bergaya, F., Theng, B.K.G. & Lagaly, G., editors). Developments in Clay Science, vol. 1. Elsevier, Amsterdam, The Netherlands.Google Scholar
Środoń, J., Drits, V.A., McCarty, D.K., Hsieh, J.C.C. & Eberl, D.D. (2001) Quantitative X-ray diffraction analysis of clay-bearing rocks from random preparations. Clays and Clay Minerals, 49, 514528.Google Scholar
Stein, S. & Okal, E.A. (1978) Seismicity and tectonics of the Ninety East Ridge area: evidence for internal deformation of the Indian plate. Journal of Geophysical Research, 83, 22332245.Google Scholar
Tiercelin, J.J. & Lezzar, K.E. (2002) A 300 million years history of rift lakes in Central and East Africa: an updated broad review. Pp. 360 in: The East African Great Lakes: Limnology, Paleolimnology and Biodiversity (Odada, E.O. & Olgado, D.O., editors). Advances in Global Change Research, vol. 12. Springer, Berlin, Germany.Google Scholar
Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental margin. Earth Sciences Review, 49, 201221.Google Scholar
Thorez, J. (1976) Practical Identification of Clay Minerals. Lelotte, G. (editor). Lelotte, Dison, Belgique, 90 p.Google Scholar
Thorez, J. (1998) Différienciation minéralogique et génétique par DRX des smectites post-saturées au Li et K. Pp. 106107 in: Réunion spécialisée ASF-SGF. Lille, 20–21/11/1998, vol. 30. ASF Publications, Paris, France.Google Scholar
Thorez, J. (2000) Cation-saturated swelling physils: an XRD revisitation. Proceedings of the 1st Latin-American Clay Conference, Funchal, Madeira, I, 7185.Google Scholar
Trentesaux, A., Liu, Z., Colin, C., Boulay, S. & Wang, P. (2003) Data report: Pleistocene paleoclimatic cyclicity of southern China: clay mineral evidence recorded in the South China Sea (ODP Site 1146). Pp 110 in: Proceedings of the Ocean Drilling Program, Scientific Results (Prell, W.L., Wang, P., Blum, P., Rea, D.K. & Clemens, S.C., editors), vol. 184. Ocean Drilling Program, College Station, TX, USA.Google Scholar
Ufer, K., Kleeberg, R., Bergmann, J. & Dohrmann, R. (2012) Rietveld refinement of disordered illite-smectite mixed-layer structures by a recursive algorithm. II: Powder pattern refinement and quantitative phase analysis. Clays and Clay Minerals, 60, 535552.Google Scholar
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R. & Kaufhold, S. (2008) Quantitative phase analysis of bentonites by the Rietveld method. Clays and Clay Minerals, 56, 272282.Google Scholar
Vanderaveroet, P., Averbuch, O., Deconinck, J.F. & Chamley, H. (1999) A record of glacial–interglacial alternations in Pleistocene sediments off New Jersey expressed by clay mineral, grain size and magnetic susceptibility data. Marine Geology, 159, 7992.Google Scholar
Vanderaveroet, P., Bout-Roumazeilles, , Fagel, N., Chamley, H. & Deconinck, J.F. (2000) Significance of random illite–vermiculite mixed layers in Pleistocene sediments of the northwestern Atlantic Ocean. Clay Minerals, 35, 679691.Google Scholar
Velde, B. (1992) Introduction to Clay Minerals. Chapman and Hall, London, UK, 198 pp.Google Scholar
Venkatarathnam, K. & Biscaye, P.E. (1973) Clay mineralogy and sedimentation in the eastern Indian Ocean. Deep Sea Research, 20, 727738.Google Scholar
Vorobyova, G.A. (1994) Paleoclimates around Lake Baikal in Pleistocene and the Holocene. Pp. 5455 in: Baikal as a Natural Laboratory for Global Change, vol. 2. Lisna Publishers, Irkutsk, Russia.Google Scholar
Wang, B., Clemens, S.C. & Liu, P. (2003) Contrasting the Indian and East Asian monsoons: implications on geological timescales. Marine Geology, 201, 521.Google Scholar
Wang, L. & Wang, P. (1990) Late Quaternary paleoceanography of the South China Sea: glacial–interglacial contrasts in an enclosed basin. Paleoceanography and Paleoclimatology, 5, 7790.Google Scholar
Wang, P., Wang, L., Bian, Y. & Jian, Z. (1995) Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles. Marine Geology, 127, 145165.Google Scholar
Warr, L.N. (2022) Earth's clay mineral inventory and its climate interaction: a quantitative assessment. Earth Science Review, 234, 104198.Google Scholar
Weber, M.E., Wiedicke, M.H., Kudrass, H.R., Hübscher, C. & Erlenkeuser, H. (1997) Active growth of the Bengal Fan during sea-level rise and highstand. Geology, 25, 315318.Google Scholar
Webster, P.J. (1987) The elementary monsoon. Pp. 332 in: Monsoons (Fein, J.S. & Stephens, P.L., editors). John Wiley and Sons, New York, NY, USA.Google Scholar
Weedon, G.P. (2003) Time-Series Analysis and Cyclostratigraphy. Cambridge University Press, Cambridge, UK, 274 pp.Google Scholar
Williams, D.F., Peck, J., Karabanov, E.B., Prokopenko, A.A., Kravchinsky, V., King, J. & Kuzmin, M.I. (1997) Lake Baikal record of continental climate response to orbital insolation during the past 5 million years. Science, 278, 11141117.Google Scholar
Windom, H.L. (1976) Lithogenous material in marine sediments. Chemical Oceanography, 5, 103135.Google Scholar
Yemane, K., Robert, C. & Bonnefile, R. (1987) Pollen and clay assemblages of a Late Miocene lacustrine sequence from the northwestern Ethiopian highlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 60, 123141.Google Scholar
Yuretich, R. & Ervin, C.R. (2002) Clay minerals as paleoenvironmental indicators in two large lakes of the African Rift Valleys: Lake Malawi and Lake Turkana. Pp. 221232 in: Sedimentation in Continental Rifts (Renaut, R.W. & Ashley, G.M., editors). SEPM Special Publication, vol. 73. SEPM Society for Sedimentary Geology, Claremore, OK, USA.Google Scholar
Yuretich, R., Melles, M., Sarata, B. & Grobe, H. (1999) Clay minerals in the sediments of Lake Baikal: a useful climate proxy. Journal of Sedimentary Research, 69, 588596.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 210, 682693.Google Scholar
Zeng, M.X, Song, Y.G., An, Z.S., Chang, H. & Li, Y. (2014) Clay mineral records of the Erlangjian drill core sediments from the Lake Qinghai Basin, China. Science China: Earth Sciences, 57, 18461859.Google Scholar
Zhao, Y., Colin, C., Liu, Z., Bonneau, L. & Siani, S. (2016) Climate forcing of terrigenous sediment input to the central Mediterranean Sea since the early Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 442, 2335.Google Scholar
Zhao, Y., Colin, C., Liu, Z., Paterne, M., Siani, G. & Xie, X. (2012) Reconstructing precipitation changes in northeastern Africa during the Quaternary by clay mineralogical and geochemical investigations of Nile deep-sea fan sediments. Quaternary Sciences Review, 57, 5870.Google Scholar
Zimmerman, H.B. (1982) Fine-grained sediment distribution in the late Pleistocene/Holocene North Atlantic. Bulletin. Institut de Géologie du Bassin d'Aquitaine, 31, 337357.Google Scholar
Deep-Sea Drillings Projects (DSDP), http://deepseadrilling.org/Google Scholar
International Continental Scientific Drilling Program (ICDP), https://www.icdp-online.org/projectsGoogle Scholar
International Ocean Drilling Projects (IODP), https://www.iodp.org/Google Scholar
Ocean Drilling Projects (ODP), 1983–2007, http://www-odp.tamu.edu/Google Scholar
Profex, Creative Commons Attribution-NonCommercial 4.0 International License by Nicola Doebelin, https://www.profex-xrd.org/lecture-handouts/Google Scholar
Deep-Sea Drillings Projects (DSDP), http://deepseadrilling.org/Google Scholar
International Continental Scientific Drilling Program (ICDP), https://www.icdp-online.org/projectsGoogle Scholar
International Ocean Drilling Projects (IODP), https://www.iodp.org/Google Scholar
Ocean Drilling Projects (ODP), 1983–2007, http://www-odp.tamu.edu/Google Scholar
Profex, Creative Commons Attribution-NonCommercial 4.0 International License by Nicola Doebelin, https://www.profex-xrd.org/lecture-handouts/Google Scholar