Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T22:28:32.288Z Has data issue: false hasContentIssue false

Chemical composition of smectites formed in clastic sediments. Implications for the smectite-illite transformation

Published online by Cambridge University Press:  09 July 2018

A. Drief
Affiliation:
Departamento de Mineralogía y Petrología, Instituto Andaluz de Ciencias de la Tierra, Universidad de Granada-C.S.I.C. Av. Fuentenueva s/n, 18002 Granada, Spain
F. Nieto*
Affiliation:
Departamento de Mineralogía y Petrología, Instituto Andaluz de Ciencias de la Tierra, Universidad de Granada-C.S.I.C. Av. Fuentenueva s/n, 18002 Granada, Spain
*

Abstract

Analytical electron microscopy of representative smectites from soils and sediments revealed that K was present in significant proportions. It was the major interlayer cation in soils from pelitic rocks, continental and marine sediments, independent of their diagenetic grade. Sodium was predominant only in soils from basic rock. Fluvial sediments contained smectites with both kinds of interlayer compositions. The octahedral composition of each sample ranged widely, covering various fields of dioctahedral smectites. The most important trend was the substitution of Al by Fe and Mg; the chemistry of each smectite particle was determined by the parent mineral from which it formed. The real interlayer composition has important implications for the diagenetic smectite–illite transformation. When considering a typical K content, the smectite–illite reaction, with chlorite and quartz as subproducts, needs only 0.21 K atoms. For more K-rich compositions, a reaction is possible without an external supply of K.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Peacor, D.R. (1989) Illite/smectite from Gulf Coast shales: a reappraisal of transmission electron microscope images. Clays Clay Miner. 37, 542-546.Google Scholar
Altaner, S.P. & Grim, R.E. (1990) Mineralogy, chemistry and diagenesis of tuffs in the Sucker Greek formation (Miocene), Eastern Oregon. Clays Clay Miner. 38, 561572.Google Scholar
Amouric, M. & Olives, J. (1991) Illitization of smectite as seen by high-resolution transmission electron microscopy. Eur. J. Mineral. 3, 831835.CrossRefGoogle Scholar
Bouchet, A., Proust, D., Meunier, A. & Beaufort, D. (1988) High-charge to low-charge smectites reaction in hydrothermal alteration processes. Clay Miner. 23, 133146.CrossRefGoogle Scholar
Buatier, M., Peacor, D.R. & O’Neil, J.R. (1992) Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for a dissolution/ crystallization origin at low temperature. Clays Clay Miner. 40, 6580.Google Scholar
Clauer, N., Środoń, J., Francu, J. & Šucha, V. (1997) K-Ar dating of illite fundamental particles separated from illite-smectite. Clay Miner. 32, 181196.Google Scholar
Freed, R.L. & Peacor, D.R. (1992) Diagenesis and the formation of authigenic illite-rich I/S crystals in the Gulf Coast shales: TEM study of clay separates. J. Sed. Pet. 62, 220234.Google Scholar
Grim, R.E. & Kulbicki, G. (1961) Montmorillonite: high temperature reactions and classification. Am. Miner. 46, 13291369.Google Scholar
Güven, N. (1988) Smectite. Pp. 497559.in. Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington D.C., USA.CrossRefGoogle Scholar
Hansen, P.L. & Lindgreen, H. (1989) Mixed-layer illitesmectite diagenesis in Upper Jurassic claystones from the north Sea and onshore Denmark. Clay Miner. 24, 197213.Google Scholar
Hover, V.C., Walter, L.M., Peacor, D.R. & Martini, A.M. (1995) K-uptake by smectite during early marine diagenesis in brackish and hypersaline depositional environments (abstract). 32nd Clay Miner. Soc. Annual Meeting Program and Abstracts. p. 61.Google Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 87, 725737.Google Scholar
Huang, W.-L., Longo, J.M. & Pevear, D.R. (1993) An experimentally derived kinetic model for smectiteto- illite conversion and its use as a geothermometer. Clays Clay Miner. 41, 162177.CrossRefGoogle Scholar
Inoue, A., Watanabe, T., Kohyama, N. & Brusewitz, A.M. (1990) Characterization of illitization of smectite in bentonite beds at Kinekulle, Sweden. Clays Clay Miner. 38, 241249.Google Scholar
Inoue, A. & Utada, M. (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita Area, Northern Honshu, Japan. Am. Miner. 76, 628640.Google Scholar
Kirsimäe, K., Jørgensen, P. & Kalm, V. (1999) Lowtemperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Miner. 34, 151163.Google Scholar
Lee, J.H., Ahn, J.H. & Peacor, D.R. (1985) Textures in layered silicates: progessive changes through diagenesis and low-temperature metamorphism. J. Sed. Pet. 55, 532540.Google Scholar
Li, G. , Peacor, D.R. & Coombs, D.S. (1997) Transformation of smectite to illite in bentonite and associated sediments from Kaka Point, New Zealand: Contrast in rate and mechanism. Clays Clay Miner. 45, 5467.Google Scholar
Lindgreen, H. & Hansen, P.L. (1991) Ordering of illitesmectite in Upper Jurassic claystones from the north Sea. Clay Miner. 26, 105125.Google Scholar
López-Galindo, A., Marinoni, L., Ben Aboud, A. & Setti, M. (1998) Morfología, fábrica y quimismo en esmectitas de los sondeos Ciros-1, 270 y 274 (Mar de Ross, Antártida). Bol. Soc. Esp. Mineral. 21, 115.Google Scholar
Lorimer, G.W. & Cliff, G. (1976) Analytical electron microscopy of minerals. Pp. 506519.in: Electron Microscopy in Mineralogy (Wenk, H.R., editor). Springer-Verlag, New York, USA.Google Scholar
Martínez-Ruiz, F., Comas, M.C. & Alonso, B. (1999) Mineral associations and geochemical indicators in upper Miocene to Pleistocene sediments in the Alboran basin. Proc. ODP, Sci. Results, 161, 2135.Google Scholar
Masuda, H., O’Neil, J.R., Jiang, W.-T. & Peacor, D.R. (1996) Relation between interlayer composition of authigenic smectite, mineral assemblages, I/S reaction rates and fluid composition in silicic ash of the Nankai Trough. Clays Clay Miner. 44, 443459.Google Scholar
Morata, D., Puga, E., Demant, A. & Aguirre, L. (1997) Geochemistry and tectonic setting of the “ophites” from the External Zones of the Betic Cordilleras (S. Spain). Estudios Geol. 53, 107120.Google Scholar
Nadeau, P.H., Farmer, V.C., McHardy, W.J. & Bain, D.C. (1985) Compositional variations of the Unter rups roth Beidellite. Am. Miner. 70, 10041010.Google Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D.R. & Arostegui, J. (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian Basin. Clays Clay Miner. 44, 304323.Google Scholar
Portugal-Ferreira, M., Morata, D., Puga, E., Demant, A. & Aguirre, L. (1995) Evolución geoquímica y temporal del magmatismo básico Mesozoico en las Zonas Externas de las Cordilleras Béticas. Estudios Geol. 51, 109118.Google Scholar
Ramseyer, K. & Boles, J.R. (1986) Mixed-layer illite/ smectite minerals in Tertiary sandstones and shales, San Joaquin Basin, California. Clays Clay Miner. 34, 115124.Google Scholar
Rieder, M., Cavazzini, G., D’Yakonov, Yu.S., Frank- Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval’, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. & Wones, D.R. (1999) Nomenclature of the micas. Mineral. Mag. 63, 267–79.Google Scholar
Sánchez-Navas, A., Martín-Algarra, A. & Nieto, F. (1998) Bacterially-mediated authigenesis of clays in phosphate stromatolites. Sedimentology, 45, 519533.Google Scholar
Shau, Y.-H. & Peacor, D.R. (1992) Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83-A TEM and AEM study. Contrib. Mineral. Pet. 112, 119133.Google Scholar
Shau, Y.-H., Feather, M.E., Essene, E.J. & Peacor, D.R. (1991) Genesis and solvus relation of submicrosco-pically intergrown paragonite and phengite in a blueschist from northern California. Contrib. Mineral. Pet. 106, 367378.Google Scholar
Singh, B. & Gilkes, R.J. (1991) A potassium-rich beidellite from a laterite pallid zone in Western Australia. Clay Miner. 26, 233244.Google Scholar
Środoń, J., Morgan, D.J., Eslinger, E.V., Eberl, D.D. & Karlinger, M.R. (1986) Chemistry of illite/smectite and end-member illite. Clays Clay Miner. 34, 368378.CrossRefGoogle Scholar
Velilla, N.S. (1983) Los granates del complejo de Sierra Nevada (Cordillera Bética). Ph.D. thesis, Univ. Granada, Spain.Google Scholar
Yau, Y.-C., Peacor, D.R., Essene, E.J., Lee, J.H., Kuo, L.C. & Cosca, M.A. (1987) Hydrothermal treatment of smectite, illite, and basalt to 4608C: Comparison of natural with hydrothermally formed clay minerals. Clays Clay Miner. 35, 241250.Google Scholar