Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T08:06:30.712Z Has data issue: false hasContentIssue false

Characteristics and firing behaviour of the under-Numidian clay deposits from the Jijel region (northeast Algeria): potential use in the ceramics industry

Published online by Cambridge University Press:  15 November 2019

Abdelmalek Baghdad*
Affiliation:
Laboratoire de Génie Géologique (LGG), Université Mohammed Seddik Benyahia BP 98, Jijel18000, Algeria
Rekia Bouazi
Affiliation:
Laboratoire de Génie Géologique (LGG), Université Mohammed Seddik Benyahia BP 98, Jijel18000, Algeria
Youcef Bouftouha
Affiliation:
Laboratoire de Génie Géologique (LGG), Université Mohammed Seddik Benyahia BP 98, Jijel18000, Algeria
Frédéric Hatert
Affiliation:
Laboratoire de Minéralogie et de Cristallochimie, Département de Géologie, Quartier Agora, 14 Allée du 6 Aout, B18 Sart-Tilman, Université de Liège, B-4000, Belgium
Nathalie Fagel
Affiliation:
UR Argile, Géochimie et Environnement Sédimentaire (AGEs), Département de Géologie, Quartier Agora, 14 Allée du 6 Aout, B18, Université de Liège, B-4000, Belgium

Abstract

The Numidian Aquitano-Burdigalian nappe from the Jijel region (northeast Algeria) shows an important clay-rich basal series. In this study, seven representative clay samples were collected from the Djimla and El-Milia areas of this region in order to analyse their mineralogy using X-ray diffraction and Fourier-transform infrared spectroscopy, chemical composition by X-ray fluorescence, particle size, plasticity, morphology by scanning electron microscopy and their ceramic properties. Samples were prepared by pressing the clays and firing them at 800–1100°C, and bulk density, water absorption, linear firing shrinkage, weight loss and bending strength values were determined on the fired samples. The clays are mainly composed of kaolinite and illite, with a small amount of 10–14 Å interstratified clay minerals and chlorite, associated with quartz and feldspars. The main oxides in the samples were SiO2, Al2O3 and Fe2O3. The clays may be classified as moderately plastic according to their Atterberg limits. Ceramic tiles have been produced by dry pressing. At all tested firing temperatures, the clays present the required standard values for linear firing shrinkage, weight loss, bulk density, water absorption and bending strength, and they are defect-free. The main transformations were observed at 1000°C with the appearance of new crystalline phases. The measured technological properties of the investigated deposits confirm that the Numidian clays from the Djimla and El-Milia regions are suitable materials for the production of high-quality structural ceramics.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: João Labrincha

References

AASHTO T99 (1982) Standard Method of Test for Moisture–Density Relations of Soils Using a 2.5-kg (5.5-lb) Rammer and a 305-mm (12-in.) Drop. Standard Specifications for Highway Materials and Methods of Sampling and Testing: Part II. American Association of State Highway and Transportation Officials, Washington, DC, USA.Google Scholar
Abajo, M.F. (2000) Manual sobre fabricación de baldosas, tejas y ladrillos. Ed. Beralmar S.A., Barcelona, Spain.Google Scholar
Abd El Aal, A. (2015) Engineering assessment and applications of clays, case study on Middle Cretaceous (Wasia Formation), Riyadh, KSA. Journal of Material Sciences & Engineering, 5, 1.Google Scholar
Aras, A. & Kiliç, S. (2017) The mineralogy and firing behaviour of pottery clays of the Lake Van region, eastern Turkey. Clay Minerals, 52, 453468.CrossRefGoogle Scholar
Baccour, H., Medhioub, M., Jamoussi, F. & Mhiri, T. (2009) Influence of firing temperature on the ceramic properties of Triassic clays from Tunisia. Journal of Materials Processing Technology, 209, 28122817.CrossRefGoogle Scholar
Baccour, H., Medhioub, M., Jamoussi, F., Mhiri, T. & Daoud, A. (2008) Mineralogical evaluation and industrial applications of the Triassic clay deposits, southern Tunisia. Materials Characterization, 59, 16131622.CrossRefGoogle Scholar
Baghdad, A., Bouazi, R., Bouftouha, Y., Bouabsa, L. & Fagel, N. (2017) Mineralogy characterization of Neogene clay areas from the Jijel basin for ceramic purposes (NE Algeria – Africa). Applied Clay Science, 136, 176183.Google Scholar
Benhammou, A., Tanouti, B., Nibou, L., Yaacoubi, A. & Bonnet, J.P. (2009) Mineralogical and physicochemical investigation of Mg-smectite from Jbel Ghassoul, Morocco. Clays and Clay Minerals, 57, 264270.CrossRefGoogle Scholar
Bennour, A., Mahmoudi, S., Srasra, E., Boussen, S. & Htira, N. (2015) Composition, firing behavior and ceramic properties of the Sejnène clays (northwest Tunisia). Applied Clay Science, 115, 3038.CrossRefGoogle Scholar
Boski, T., Pessoa, J., Pedro, P., Thorez, J., Dias, J.M.A. & Hall, I.R. (1998) Factors governing abundance of hydrolyzable amino acids in the sediments from the N.W. European Continental Margin (47–50°N). Progress in Oceanography, 42, 145164.CrossRefGoogle Scholar
Bouillin, J.P., Kornprobst, J. & Raoult, J.F. (1977) Données préliminaires sur le complexe volcano-sédimentaire de Rekkada Metletine (ex-Texenna), en Petite Kabylie (Algérie). Bulletin de la Société géologique de France, 4, 805813.CrossRefGoogle Scholar
Boussen, S., Sghaier, D., Chaabani, F., Jamoussi, B. & Bennour, A. (2016) Characterization and industrial application of the Lower Cretaceous clay deposits (Bouhedma Formation), southeast Tunisia: potential use for the manufacturing of ceramic tiles and bricks. Applied Clay Science, 123, 210221.CrossRefGoogle Scholar
Brindley, G.W. & Nakahira, M. (1959) The kaolinite–mullite reaction series: II, metakaolin. Journal of the American Ceramic Society, 42, 314323.CrossRefGoogle Scholar
Burst, J.F. (1991) The application of clay minerals in ceramics. Applied Clay Science, 5, 421443.CrossRefGoogle Scholar
Carretero, M.I. (2002) Clay minerals and their beneficial effects upon human health: a review. Applied Clay Science, 21, 155163.CrossRefGoogle Scholar
Casagrande, A. (1948) Classification and identification of soils. Transactions of the American Society of Civil Engineers, 113, 901930.Google Scholar
Celik, H. (2010) Technological characterization and industrial application of two Turkish clays for the ceramic industry. Applied Clay Science, 50, 245254.CrossRefGoogle Scholar
Cook, H.E., Johnson, P.D., Matti, J.C. & Zemmels, I. (1975) Methods of sample preparation and X-ray diffraction data analysis in X-ray mineralogy laboratory. Pp. 9991007 in: Initial Reports of the Deep Sea Drilling Project, Vol. 28. Texas A & M University, Ocean Drilling Program, College Station, TX, USA.CrossRefGoogle Scholar
Correia, S.L., Curto, K.A.S., Hotza, D. & Segadães, A.M. (2004a) Using statistical techniques to model the flexural strength of dried triaxial ceramic bodies. Journal of the European Ceramic Society, 24, 28132818.CrossRefGoogle Scholar
Correia, S.L., Hotza, D. & Segadães, A.M. (2004b) Simultaneous optimization of linear firing shrinkage and water absorption of triaxial ceramic bodies using experiments design. Ceramics International, 30, 917922.CrossRefGoogle Scholar
Cultrone, G., Sebastian, E., Elerk, K., De la Torre, M.J., Cazalla, O. & Rodriguez-Navarro, C. (2004) Influence of mineralogy and firing temperature on the porosity of bricks. Journal of the European Ceramic Society, 24, 547564.CrossRefGoogle Scholar
Daoudi, L., Elboudour Elidrissi, H., Saadi, L., Albizane, A., Bennazha, J., Waqif, M., El Ouahabi, M. & Fagel, N. (2014) Characteristics and ceramic properties of clayey materials from Amezmiz region (Western High Atlas, Morocco). Applied Clay Science, 102, 139147.Google Scholar
Dondi, M., Ercolani, G., Fabbri, B. & Marsigli, M. (1996) Chemistry of pyroxene and melilite formed during the firing of ceramic clay bodies. Pp. 210211 in: Advances in Clay Minerals, Proceedings of the Spanish–Italian Meeting on Clay Minerals, Granada, Spain (M. Ortega-Euertas, A. Lôpez-Galindo & I. Palomo-Delgado, editors). Sociedad Espanola de Arcillas, Granada, Spain, and Gruppo Italiano dell'AIPEA, Venice, Italy.Google Scholar
Dondi, M., Guarini, G. & Raimondo, M. (1999) Trends in the formation of crystalline and amorphous phases during the firing of clay bricks. Tile & Brick International, 3, 176183.Google Scholar
Durand Delga, M. (1955) Étude géologique de l'Ouest de la Chaine numidique. Bulletin Service de la Carte Géologique de l'Algérie, 24, 533.Google Scholar
Durand Delga, M. (1969) Mise au point sur la structure du Nord-Est de la Berbérie. Bulletin Service de la Carte Géologique de l'Algérie, 39, 89131.Google Scholar
Durand Delga, M. & Magné, J. (1952) Note préliminaire sur le Néogène du bassin de Djidjelli (Nord-Constantinois, Algérie). Société Géologique de France, 11, 225227.Google Scholar
El Ouahabi, M., Daoudi, L., Hatert, F. & Fagel, N. (2015) Modified mineral phases during clay ceramic firing. Clays and Clay Minerals, 63, 404413.CrossRefGoogle Scholar
Fabbri, B. & Fiori, C. (1985) Clays and complementary raw materials for stoneware tiles. Mineralogica et Petrographica Acta, 29A, 535545.Google Scholar
Fadil-Djenabou, S., Ndjigui, P.D. & Mbey, J.A. (2015) Mineralogical and physicochemical characterization of Ngaye alluvial clays (northern Cameroon) and assessment of its suitability in ceramic production. Journal of Asian Ceramic Societies, 3, 5058.CrossRefGoogle Scholar
Fagel, N., Thamó-Bózsó, E. & Heim, B. (2007) Mineralogical signatures of Lake Baikal sediments: Sources of sediment supplies through Late Quaternary. Sedimentary Geology, 194, 3759.CrossRefGoogle Scholar
Farmer, V.C. (1974) The layer silicates. Pp. 331365 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society of Great Britain and Ireland, Twickenham, UK.CrossRefGoogle Scholar
Farmer, V.C. (2000) Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 56, 927930.CrossRefGoogle ScholarPubMed
Fisher, P. (1984) Some comments on the color of fired clays. Ziegel Industrie International, 37, 475483.Google Scholar
Gee, G.W. & Bauder, J.W. (1986) Particle-size analysis. Pp.383411 in: Methods of Soil Analysis, Part 1, 2nd ed. Agronomy Monograph 9 (Klute, A., editor). ASA and SSSA, Madison, WI, USA.Google Scholar
Geological Survey of Algeria and Mining Control Agency (1999) Booklet of Useful Substances Non-Metallics of Algeria. Geological Service of Algeria, Boumerdès, Algeria, 59 pp.Google Scholar
Holtz, R.D. & Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering. Prentice-Hall, Upper Saddle River, NJ, USA.Google Scholar
ISO 10545-3 (1995) Ceramic Tiles. Part 3. Determination of Water Absorption, Apparent Porosity, Apparent Relative Density and Bulk Density, 2nd ed., including technical corrigendum. International Organization for Standardization, Geneva, Switzerland.Google Scholar
ISO 10545-4 (2004) Ceramic Tiles. Part 4. Determination of Modulus of Rupture and Breaking Strength, 2nd ed., including technical corrigendum. International Organization for Standardization, Geneva, Switzerland.Google Scholar
ISO 13006 (1998) Ceramic Tiles. Definition, Classification, Characteristics and Marking, 2nd ed., including technical corrigendum. International Organization for Standardization, Geneva, Switzerland.Google Scholar
Konta, J. (1980) Properties of Ceramic Raw Materials. Pp. 132 in: Ceramic Monographs – Handbook of Ceramics. Verlag Schmid, Freiburg im Breisgau, Germany.Google Scholar
Konta, J. (1995) Clay and man: clay raw materials in the service of man. Applied Clay Science, 10, 275335.CrossRefGoogle Scholar
Kreimeyer, R. (1987) Some notes on the firing colour of clay bricks. Applied Clay Science, 2, 175183.CrossRefGoogle Scholar
Lahondère, J.C., Feiberg, H. & Hac, B.U. (1979) Datation des grès numidiens d'Algérie orientale: conséquences structurales. Comptes Rendus de l'Académie des Sciences de France, 4, 383386.Google Scholar
Lee, V.-G. & Yeh, T.-H. (2008) Sintering effects on the development of mechanical properties of fired clay ceramics. Materials Science and Engineering: A, 485(1–2), 513.CrossRefGoogle Scholar
LCPC (1987) Limites d'Atterberg, limite de liquidité, limite de plasticité, méthode d'essai LPC, n°19. Publication LCPC, Paris, France, 26 pp.Google Scholar
Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 110.CrossRefGoogle Scholar
Mahmoudi, S., Srasra, E. & Zargouni, F. (2008) The use of Tunisian Barremian clay in the traditional ceramic industry: optimization of ceramic properties. Applied Clay Science, 42, 125129.CrossRefGoogle Scholar
Manukaji John, U. (2013) Chemical and mechanical characterization of clay samples from Kaduna State Nigeria. International journal of Engineering Inventions, 7, 2026.Google Scholar
Milheiro, F.A.C., Freire, M.N., Silva, A.G.P. & Holanda, J.N.F. (2005) Densification behaviour of a red firing Brazilian kaolinitic clay. Ceramics International, 31, 757763.CrossRefGoogle Scholar
Monteiro, S.N. & Vieira, C.M.F. (2004) Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil. Applied Clay Science, 27, 229234.CrossRefGoogle Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, NY, USA, 332 pp.Google Scholar
Murray, H.H. (2007) Applied Clay Mineralogy. Developments in Clay Science, Vol. 2. Elsevier, Amsterdam, The Netherlands, 188 pp.Google Scholar
NF P 94-051 (1993) Soils: Investigation and Testing. Determination of Atterberg's Limits. Liquid Limit Test using Cassagrande Apparatus. Plastic Limit Test on Rolled Thread. 1st ed., 93-03. French Association of Normalization (AFNOR), Paris, France.Google Scholar
NF P 94-054 (1991) Soils: Investigation and Testing. Determination of Particle Density. Pycnometer Method. 1st ed., 91-10. French Association of Normalization (AFNOR), Paris, France.Google Scholar
NF P 94-056 (1996) Soils: Investigation and Testing. Granulometric analysis: Dry sieving method after washing, 1st ed., 96-03-F. French Association of Normalization (AFNOR), Paris, France.Google Scholar
NF P 94-057 (1992) Soils: Investigation and Testing. Granulometric Analysis: Hydrometer Method, 1st ed., 92-05. French Association of Normalization (AFNOR), Paris, France.Google Scholar
Ngun, B.K., Hasmaliza, M., Shamsul, K.S., Kiyoshi, O. & Zainal, A.A. (2011) Some ceramic properties of clays from central Cambodia. Applied Clay Science, 53, 3341.CrossRefGoogle Scholar
Njoya, D., Hajjaji, M. & Njopwouo, D. (2012) Effects of some processing factors on technical properties of a clay-based ceramic material. Applied Clay Science, 65–66, 106113.CrossRefGoogle Scholar
Okada, K. & Otsuka, N. (1986) Characterization of spinel phase from SiO2–Al2O3 xerogels and the formation process of mullite. Journal of the American Ceramic Society, 69, 652656.CrossRefGoogle Scholar
Peters, T. & Iberg, R. (1978) Mineralogical changes during firing of calcium-rich brick clays. Ceramic Bulletin, 57, 503509.Google Scholar
Reeves, G.M., Sims, I. & Cripps, J.C. (2006) Clay Materials Used in Construction. Geological Society, London, UK, 525 pp.Google Scholar
Rivi, A. & Ries, B. (1997) Single-line dry grinding technology. Ceramic World 24, 132141.Google Scholar
Semiz, B. (2017) Characteristics of clay-rich raw materials for ceramic applications in Denizli region (western Anatolia). Applied Clay Science, 137, 8393.CrossRefGoogle Scholar
Shepard, F.P. (1954) Nomenclature based on sand–silt–clay ratios. Journal of Sedimentary Petrology, 24, 151158.Google Scholar
Velde, B. & Meunier, A. (2008) The Origin of Clay Minerals in Soils and Weathered Rocks. Springer, Berlin, Germany, 406 pp.CrossRefGoogle Scholar
Vila, J.M. (1978) Carte structurale au 1/500 000 de la chaine alpine d'Algérie orientale et des confins algéro-tunisiens. Avec le concours du Centre national de Recherche Scientifique et du Bureau d'Etudes Industrielles et de Coopération de l'Institut Français du Pétrole, Paris, France (n.p.).Google Scholar
Vila, J.M. (1980) La chaîne alpine d'Algérie orientale et des confins algéro-tunisien. PhD thesis, University of Paris VI, Paris, France, 663 pp.Google Scholar
Wentworth, C.K. (1922) A scale of grade and class terms for clastic-sediments. Journal of Geology, 30, 377392.CrossRefGoogle Scholar
Winkler, H.G.F. (1954) Bedeutung der Korngrössenverteilung und des Mineral-bestandes von Tonen für die Herstellung grobkeramischer Erzeugnisse. Berichte der Deutschen Keramischen Gesellschaft, 31, 337343.Google Scholar