Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T04:26:42.678Z Has data issue: false hasContentIssue false

29Si and 27Al nuclear magnetic resonance spectroscopy of 2:1 clay minerals

Published online by Cambridge University Press:  09 July 2018

J. G. Thompson*
Affiliation:
Geology Department, James Cook University of North Queensland, Townsville, Queensland 4811, Australia

Abstract

Solid-state 29Si and 27Al NMR spectroscopy with magic-angle spinning was used to study two smectites, two illites and a vermiculite. 27Al NMR was able to directly observe the coordination of aluminium. 29Si NMR was sensitive to both the chemical nature of the interlayer species and the presence of aluminium in the tetrahedral sheet. Well-resolved resonances in the vermiculite at δ = −84·6, −88·7 and −92·9 (ppm relative to TMS) were assigned to Q3(2Al), Q3(1Al) and Q3(0Al) respectively. The smectites exhibited single resonances centred at δ = −93 (Q3(0Al)). The illites displayed broad resonances between δ = −80 and −105. The 29Si spectrum of a smectite complexed with alkylammonium cations showed a shielding of up to 1 ppm relative to the untreated sample.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barron, P.F., Wilson, M.A., Campbell, A.S. & Frost, R.L. (1982) Detection of imogolite in soils using solid-state 29Si NMR. Nature 299, 616618.CrossRefGoogle Scholar
Barron, P.F., Frost, R.L., Skjemstad, J.O. & Koppi, A.J. (1983) Detection of two silicon environments in kaolins via solid-state 29Si NMR. Nature 302, 4950.CrossRefGoogle Scholar
Engelhardt, G., Lohse, U., Samoson, A., Mägi, M., Tarmar, M. & Lippmaa, E. (1982) High-resolution 29Si NMR of dealuminated and ultrastable Y-zeolites. Zeolites 2, 5962.CrossRefGoogle Scholar
Farmer, V.C. & Russell, J.D. (1967) Infrared absorption spectrometry in clay studies. Clays Clay Miner. 15, 121142.CrossRefGoogle Scholar
Fyfe, C.A., Gobbi, G.C., Klinowski, J., Thomas, J.M. & Ramdas, S. (1982) Resolving crystallographically distinct tetrahedial sites in silicalite and ZSM-5 by solid-state NMR. Nature 296, 530533.CrossRefGoogle Scholar
Giese, R.F. (1975) Interlayer bonding in talc and pyrophyllite. Clays Clay Miner. 23, 165166.CrossRefGoogle Scholar
Higgins, J.B. & Woessner, D.E. (1982) 29Si, 27Al and 23Na spectra of framework silicates EOS 63, 1139.Google Scholar
Hougardy, J., Stone, W.E.E. & Fripiat, J.J. (1976) NMR study of adsorbed water. 1. Molecular orientation and protonic motions in the two-layer hydrate of a Na-vermiculite. J. chem. Phys. 64, 38403851.CrossRefGoogle Scholar
Lippmaa, E., Mägi, M. Samoson, A., Engelhardt, G. & Grimmer, A.-R. (1980) Structural studies of silicates by solid-state high-resolution 29Si NMR. J. Am. chem. Soc. 102, 48894893.CrossRefGoogle Scholar
Lippmaa, E., Mägi, M. Samoson, A., Tarmar, M. & Engelhardt, G. (1981) Investigation of the structure of zeolites by solid-state high-resolution 29Si NMR spectroscopy. J. Am. chem. Soc. 103, 49924996.CrossRefGoogle Scholar
Mägi, M. Samoson, A., Tarmar, M., Engelhardt, G. & Lippmaa, E. (1981) Investigations into the structure of silicate minerals using high-resolution solid-state 29Si NMR spectroscopy. Dokl. Akad. Nauk. SSSR 261, 11691174.Google Scholar
Maxwell, I.E., van Erp, W.A., Hays, G.R., Couperus, T., Huis, R. & Clague, D.H. (1982) A 29Si NMR study of the ultrastabilisation process in synthetic faujasite. JCS Chem. Commun. 523524.Google Scholar
Melchior, M.T., Vaughan, D.E.W., Jarman, R.H. & Jacobson, A.J. (1982) The characterisation of Si-Al ordering in A-type zeolite (ZK4) by 29Si NMR. Nature 298, 455456.CrossRefGoogle Scholar
Müller, D., Gessner, W., Behrens, H.-J. & Scheler, G. (1981) Determination of the aluminium coordination in aluminium-oxygen compounds by solid-state high-resolution 27Al NMR. Chem. Phys. Lett. 79, 5962.CrossRefGoogle Scholar
Norrish, K. (1973) Factors in the weathering of mica to vermiculite. Pp. 417432 in: Proc. Int. Clay Conf. Madrid, 1972 (Serratosa, J.M., editor). Div. Ciencias C.S.I.C, Madrid.Google Scholar
Oldfield, E., Kinsey, R.A., Smith, K.A., Nichols, J.A. & Kirkpatrick, R.J.(1983) High-resolution NMR of inorganic solids. Influence of magnetic centers on magic-angle sample-spinning lineshapes in some natural aluminosilicates. J. Magn. Reson. 51, 325329.Google Scholar
Sanz, J. & Serratosa, J.M. (1984) Distinction of tetrahedrally and octahedrally coordinated Al in phyllosilicates by NMR spectroscopy. Clay Miner. 19, 113115.CrossRefGoogle Scholar
Shirozu, H. & Bailey, S.W. (1966) Crystal structure of a two-layer Mg-vermiculite. Am. Miner. 52, 11241143.Google Scholar
Smith, J.V. & Blackwell, C.S. (1983) Nuclear magnetic resonance of silica polymorphs. Nature 303, 223225.CrossRefGoogle Scholar
Stone, W.E.E. (1982) The use of NMR in the study of clay minerals. Pp. 77112 in: Advanced Techniques for Clay Mineral Analysis (Fripiat, J.J., editor). Elsevier, Amsterdam.Google Scholar
Stone, W.E.E. & Sanz, J. (1980) Distribution of ions in the octahedral sheet of micas. Pp. 317330 in: Advanced Chemical Methods for Soil and Clay Minerals Research (Stucki, J.W. & Banwart, W.L., editors). Riedel, Dordrecht.CrossRefGoogle Scholar
Thomas, J.M., Bursill, L.A., Lodge, E.A., Cheetham, A.K. & Fyfe, C.A. (1981) A reassessment of zeolite A. Evidence that the structure is rhombohedral with unexpected ordering in the aluminosilicate framework. JCS Chem. Commun. 276277.Google Scholar
Thompson, J.G. (1984a) Two possible interpretations of 29Si nuclear magnetic resonance spectra of kaolingroup minerals. Clays Clay Miner, (in press).Google Scholar
Thompson, J.G. (1984b) Interpretation of solid state 13C and 29Si NMR spectra of kaolinite intercalates. Clays Clay Miner, (in press).Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Elsevier, Amsterdam.Google Scholar