Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T19:59:21.711Z Has data issue: false hasContentIssue false

The significance of clay-water relationships in ceramics

Published online by Cambridge University Press:  14 March 2018

D. A. Holdridge
Affiliation:
British Ceramic Research Association, Penkhull, Stoke-on-Trent
F. Moore
Affiliation:
British Ceramic Research Association, Penkhull, Stoke-on-Trent
Get access

Extract

The mineral present in most clays used in the fine ceramics industries is kaolinite. Both china clays and ball clays consist essentially of this mineral in association with quartz and some form of mica. There is some evidence for the presence of traces of montmorillonite in certain of the Cornish china clays (Clark, 1950) and a method of estimating this has been reported (Parker, Warren and Morcom, 1951). Work at the British Ceramic Research Association has shown that many Dorset ball clays are largely composed of a disordered kaolinite similar to Brindley and Robinson's fireclay mineral (1947); such clays are frequently more plastic than other ball clays and show high mechanical strength. Other ball clays contain normal kaolinite of finer particle size than the average china clay and in exceptional cases may show strengths equalling those of the disordered kaolinite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bingham, E. C., 1916. Nat. Bur. Stand. Sci. Papers, 278.Google Scholar
Bingham, E. C. and Green, H., 1919. Proc. Amer. Soc. Test. Mater., 19, 641.Google Scholar
Brindley, G. W. and Robinson, K., 1947. Trans. Brit. Ceram. Soc, 46, 49.Google Scholar
Buckingham, E., 1921. Proc. Amer. Soc. Test. Mater., 21, 1154.Google Scholar
Clark, N. O., 1950. Trans. Brit. Ceram. Soc, 49, 409.Google Scholar
Green, H. and Weltmann, R. N., 1943. Ind. Eng. Chem. Anal. Ed., 15, 201. 1946 ibid., 18, 167.Google Scholar
Gruner, E., 1950. Ber. deut. keram. Ges., 27, 81.Google Scholar
Hauser, E. A. and le Beau, D. S., 1938. J. Phys. Chem., 42, 1051. 1941 ibid., 45, 54.Google Scholar
Hendricks, S. B. and Jefferson, M. E., 1938. Amer. Min., 23, 863.Google Scholar
Holdridge, D. A., 1952. Trans. Brit. Ceram. Soc, 51, 401.Google Scholar
Kelley, W. P., Jenny, H. and Brown, S. M., 1936. Soil Sci., 41, 359.Google Scholar
Macey, H. H., 1942. Trans. Brit. Ceram. Soc, 41, 73.Google Scholar
Mooney, M., 1931. J. Rheol, 2, 210.Google Scholar
Nieuwenburg, C. J. van, 1938. Second Rep. on Viscosity and Plasticity (Amsterdam), p. 241.Google Scholar
Parker, T. W., Warren, I. H. and Morcom, A. J., 1951. Clay Minerals Bull, 1, 166.Google Scholar
Pfefferkorn, K., 1924. Sprechsaal, 57, 297.Google Scholar
Rabinowitsch, B., 1929. Z. physik Chem., A 145, 1.Google Scholar
Reiner, M, 1926. Koll. Zeitschr., 39, 80.Google Scholar
Reiner, M., 1949. “Deformation and Flow” (London).Google Scholar
Scott Blair, G. W. and Crowther, E. M., 1929. J. Phys. Chem., 33, 321.Google Scholar
Sexton, A. H. and Davidson, W. B., 1923. “Fuel and Refractory Materials ” (Blackie and Sons, London) p. 331.Google Scholar
Siefert, A. C. and Henry, E. C, 1947. J. Amer. Ceram. Soc, 30, 37.CrossRefGoogle Scholar
Volarovich, M. P. and Tolstoi, D. M., 1934. C. Rendus Acad. Sci., U.S.S.R., 1, 557.Google Scholar
Williamson, W. O., 1947. Trans. Brit. Ceram. Soc, 46, 77.Google Scholar