Hostname: page-component-6587cd75c8-gglxz Total loading time: 0.001 Render date: 2025-04-23T19:08:06.709Z Has data issue: false hasContentIssue false

Two hundred and twenty-nine cases of bidirectional cavopulmonary anastomosis with and without antegrade pulmonary blood flow, a single-center experience

Published online by Cambridge University Press:  03 October 2024

Maksym Delikatnyi*
Affiliation:
Department of Cardiac Surgery of Newborns and Early Childhood, Ukrainian Children’s Cardiac Center, Kyiv, Ukraine
Roman Sekelyk
Affiliation:
Department of Cardiac Surgery of Newborns and Early Childhood, Ukrainian Children’s Cardiac Center, Kyiv, Ukraine
Andrii Maksymenko
Affiliation:
Department of Interventional Cardiology, Ukrainian Children’s Cardiac Center, Kyiv, Ukraine
Andrii Kurkevych
Affiliation:
Department of Cardiology, Ukrainian Children’s Cardiac Center, Kyiv, Ukraine
*
Corresponding author: Maksym Delikatnyi; Email: [email protected]

Abstract

Bidirectional cavopulmonary anastomosis is palliative surgical procedure for stepwise adaptation of the ventricle by time-phased relief of blood volume from the single functional ventricle. There still exists a controversial question regarding maintaining additional antegrade pulmonary blood flow. We retrospectively reviewed the surgical cases of 261 patients who underwent bidirectional cavopulmonary anastomosis in our institution from 2012 to 2022 with special regard to antegrade pulmonary blood flow as our preferred strategy. The mean age at the time of surgery was 33.1 months (range 2.9–192 months), and the mean weight was – 7.6 kg (range 3.9–38 kg). Furthermore, we divided all the patients into two groups: in group 1 (n = 182) – patients who underwent bidirectional cavopulmonary anastomosis with antegrade pulmonary blood flow, and in group 2 (n = 47) – patients without antegrade pulmonary blood flow. The mean follow-up time was 56 months (range 24–120 months). Mortality rate was 4.8 % (n = 11) in the past 10 years. Statistical difference between groups was in the following positions: group 2 had less ICU stay (p < 0.000125) and hospital stay (p < 0.017110); group 1 had a longer duration of pleural effusion (p < 0.000003) and amount of drainage output (p < 0.007), also demonstrated higher oxygen saturation (p < 0.000264) and Glenn shunt pressure (p < 0.002) after the surgery; but there was no difference in oxygen saturation after 6, 12, and 24 months; mortality in both groups has no statistic difference. Considering our experience, we take a stand on the controlled to antegrade pulmonary blood flow strategy during bidirectional cavopulmonary anastomosis.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Baffa, JM, Rychik, J, Gullquist, SD et al. Outcome following bidirectional cavopulmonary anastomosis prior to modified Fontan procedure. J Am Coll Cardiol 1991; 17: A33.CrossRefGoogle Scholar
Hopkins, RA, Armstrong, BE, Serwer, GA, Peterson, RJ, HN Oldham, Jr. Physiologic rationale for a bidirectional cavopul- monary shunt: a versatile complement to the Fontan principle. J Thorac Cardiovasc Surg 1985; 90: 391398.CrossRefGoogle Scholar
Mazzera, E, Corno, A, Picardo, S et al. Bidirectional cavopulmonary shunts: clinical applications as staged or definite palliation. Ann Thorac Surg 1989; 47: 415420.CrossRefGoogle ScholarPubMed
Bridges, ND, Jonas, RA, Mayer, JE, Flanagan, MF, Keane, JF, Castaneda, AR. Bidirectional cavopulmonary anastomosis as interim palliation for high-risk Fontan candidates: early results. Circulation 1990; 82: 170176.Google ScholarPubMed
Henaine, R, Vergnat, M, Mercier, O et al. Hemodynamics and arteriovenous malformations in cavopulmonary anastomosis: the case for residual antegrade pulsatile flow. J Thorac Cardiovasc Surg 2013; 146: 13591365.CrossRefGoogle ScholarPubMed
Srivastava, D, Preminger, T, Lock, JE et al. Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation 1995; 92: 12171222.CrossRefGoogle ScholarPubMed
Kogon, BE, Plattner, C, Leong, T, Simsic, J, Kirshbom, PM, Kanter, KR. The bidirectional Glenn operation: a risk factor analysis for morbidity and mortality. J Thorac Cardiovasc Surg 2008; 136: 12371242.CrossRefGoogle ScholarPubMed
Norwood, WI, Jacobs, ML. Fontan’s procedure in two stages. Am J Surg 1993; 166: 548551.CrossRefGoogle ScholarPubMed
Jonas, RA. Indications and timing for the bidirectional Glenn shunt versus the fenestrated Fontan circulation. J Thorac Cardiovasc Surg 1994; 108: 522524.CrossRefGoogle ScholarPubMed
Karl, TR. The bidirectional cavopulmonary shunt for hypoplastic left heart syndrome. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2001; 4: 5870.CrossRefGoogle ScholarPubMed
Bove, EL. Current status of staged reconstruction for hypoplastic left heart syndrome. Pediatr Cardiol 1998; 19: 308315.CrossRefGoogle ScholarPubMed
Alejos, JC, Williams, RG, Jarmakani, JM et al. Factors ifluencing survival in patients undergoing the bidirectional Glenn anastomosis. Am J Cardiol 1995; 75: 10481050.CrossRefGoogle ScholarPubMed
Friedman, KG, Salvin, JW, Wypij, D et al. Risk factors for failed staged palliation after bidirectional Glenn in infants who have undergone stage one palliation. Eur J Cardiothorac Surg 2011; 40: 10001006.Google ScholarPubMed
Douglas, WI, Goldberg, CS, Mosca, RS, Law, IH, Bove, EL. Hemi-Fontan procedure for hypoplastic left heart syndrome: outcome and suitability for Fontan. Ann Thorac Surg 1999; 68: 13611368.CrossRefGoogle ScholarPubMed