Hostname: page-component-f554764f5-246sw Total loading time: 0 Render date: 2025-04-20T03:30:43.690Z Has data issue: false hasContentIssue false

The potential use of game theory in decision-making in CHD

Published online by Cambridge University Press:  10 October 2024

Jeevan Francis*
Affiliation:
Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
Sneha Prothasis
Affiliation:
Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
Ayalvadi Ganesh
Affiliation:
School of Mathematics, University of Bristol, Bristol, UK
Thanapon Ekkunagul
Affiliation:
Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen, UK
Serban Stoica
Affiliation:
Bristol Children’s Hospital. University of Bristol, Bristol, UK
*
Corresponding author: Jeevan Francis; Email: [email protected]

Abstract

Background: Congenital cardiac care involves multiple stakeholders including patients and their families, surgeons, cardiologists, anaesthetists, the wider multidisciplinary team, healthcare providers, and manufacturers, all of whom are involved in the decision-making process to some degree. Game theory utilises human behaviour to address the dynamics involved in a decision and what the best payoff is depending on the decision of other players. Aim: By presenting these interactions as a strategic game, this paper aims to provide a descriptive analysis on the utility and effectiveness of game theory in optimising decision-making in congenital cardiac care. Methodology: The comprehensive literature was searched to identify papers on game theory, and its application within surgery. Results: The analysis demonstrated that by utilising game theories, decision-making can be more aligned with patient-centric approaches, potentially improving clinical outcomes. Conclusion: Game theory is a useful tool for improving decision-making and may pave the way for more efficient and improved patient-centric approaches.

Type
Review
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

McMahon, CJ, Sendžikaitė, S, Jegatheeswaran, A et al. Managing uncertainty in decision-making of common congenital cardiac defects – ERRATUM. Cardiol Young 2023; 33: 502502.CrossRefGoogle ScholarPubMed
Duignan, S, Ryan, A, O’Keeffe, D, Kenny, D, McMahon, CJ. Prospective analysis of decision making during joint cardiology cardiothoracic conference in treatment of 107 Consecutive children with congenital heart disease. Pediatr Cardiol 2018; 12: 13301338.CrossRefGoogle Scholar
Duignan, S, Ryan, A, Burns, B, Kenny, D, McMahon, CJ. Complex decision making in the pediatric catheterization laboratory: catheterizer, know thyself and the data. Pediatr Cardiol 2018; 13: 12811289.CrossRefGoogle Scholar
Loftus, TJ, Filiberto, AC, Li, Y et al. Decision analysis and reinforcement learning in surgical decision-making. Surgery 2020; 168: 253266. DOI: 10.1016/j.surg.2020.04.049 CrossRefGoogle ScholarPubMed
Diamant, M, Obolski, U. The straight and narrow: a game theory model of broad- and narrow-spectrum empiric antibiotic therapy. Math Biosci 2024; 372: 109203.CrossRefGoogle ScholarPubMed
Yeung, H-M, Makkapati, S. Making sense: treating patients with opioid use disorder through the lens of game theory. J Community Hosp Intern Med Perspect 2024; 14.Google ScholarPubMed
Echenique, F, Immorlica, N, Vazirani, VV, Roth, AE. Kidney Exchange. In: Online and matching-based market design, 2023; 201216. DOI: 10.1017/9781108937535.009.CrossRefGoogle Scholar
Kuritzkes, DR. In memoriam: Mark A. Wainberg. J Infect Dis 2017; 216: S797S797. DOI: 10.1093/infdis/jix443 CrossRefGoogle Scholar
Faeghi, S, Lennerts, K, Nickel, S. Strategic planning of operating room session allocation using stability analysis. Health Syst (Basingstoke) 2021; 12: 167180. DOI: 10.1080/20476965.2021.1997651.CrossRefGoogle ScholarPubMed
Castellanos, SA, Buentello, G, Gutierrez-Meza, D et al. Use of game theory to model patient engagement after surgery: a qualitative analysis. J Surg Res 2018; 221: 6976. DOI: 10.1016/j.jss.2017.07.039.CrossRefGoogle ScholarPubMed
Edelson, JB, Rossano, JW, Griffis, H et al. Resource use and outcomes of pediatric congenital heart disease admissions. JAHA 2021; 10: 018286. DOI: 10.1161/JAHA.120.CrossRefGoogle ScholarPubMed
Moridzadeh, RS, Sanaiha, Y, Madrigal, J, Antonios, J, Benharash, P, Baril, DT. Nationwide comparison of the medical complexity of patients by surgical specialty. J Vasc Surg 2021; 73: 683688. DOI: 10.1016/j.jvs.2020.05.072.CrossRefGoogle ScholarPubMed
Kaba, R, Sooriakumaran, P. The evolution of the doctor-patient relationship. Int J Surg 2007; 5: 5765. DOI: 10.1016/j.ijsu.2006.01.005.CrossRefGoogle ScholarPubMed
Francis, J, Prothasis, S, George, J, Stoica. Patient-reported outcome measures in congenital heart surgery: a systematic review. Cardiol Young 2023; 33: 337341. DOI: 10.1017/S1047951123000057.CrossRefGoogle ScholarPubMed
Oravec, N, Arora, RC, Bjorklund, B et al. Patient and caregiver preferences and prioritized outcomes for cardiac surgery: a scoping review and consultation workshop. J Thorac Cardiovasc Surg 2023; 166: 598609.CrossRefGoogle ScholarPubMed
Angelos, P, Taylor, LJ, Roggin, K et al. Decision-making in surgery. Ann Thorac Surg 2024; 117: 10871094. DOI: 10.1016/j.athoracsur.2024.01.001.CrossRefGoogle ScholarPubMed
Drury, NE, Herd, PC, Biglino, G et al. Research priorities in children and adults with congenital heart disease:. A James Lind alliance priority setting partnership, University of Birmingham. 2022. Available at: https://research.birmingham.ac.uk/en/publications/research-priorities-in-children-and-adults-with-congenital-heart-.CrossRefGoogle Scholar
Manson, NC. Why do patients want information if not to take part in decision making? J Med Ethics 2010; 36: 834837. DOI: 10.1136/jme.2010.036491.CrossRefGoogle Scholar
Armellino, MF, Marini, P, Piazza, D et al. Assessment of surgeon communication skills from the patient perspective: a national evaluation using the communication assessment tool. Patient Educ Couns 2022; 105: 769774. DOI: 10.1016/j.pec.2021.06.010.CrossRefGoogle ScholarPubMed
Brown, NM, Killen, CJ, Schneider, AM. Application of game theory to orthopaedic surgery. J Am Acad Orthop Surg 2022; 30: 155160. DOI: 10.5435/JAAOS-D-21-00794.Google ScholarPubMed
McFadden, DW, Tsai, M, Kadry, B, Souba, WW. Game theory: applications for surgeons and the operating room environment. Surgery 2012; 152: 915922. DOI: 10.1016/j.surg.2012.06.019.CrossRefGoogle ScholarPubMed
Wadhera, RK, Parker, SH, Burkhart, HM et al. Is the, sterile cockpit, concept applicable to cardiovascular surgery critical intervals or critical events? The impact of protocol-driven communication during cardiopulmonary bypass. J Thorac Cardiovasc Surg, 2010; 139: 312319. DOI: 10.1016/j.jtcvs.2009.10.048.CrossRefGoogle ScholarPubMed
Arnold, D, Fleshman, JW. Leadership in the setting of the operating room surgical team. Clin Colon Rectal Surg 2020; 33: 191194. DOI: 10.1055/s-0040-1709442.Google ScholarPubMed
Avgerinos, E, Fragkos, I, Huang, Y. Team familiarity in cardiac surgery operations: the effects of hierarchy and failure on team productivity. Hum Relat 2020; 73: 12781307. DOI: 10.1177/0018726719857122.CrossRefGoogle Scholar
Kennedy-Metz, LR, Barbeito, A, Dias, RD, Zenati, MA. Importance of high-performing teams in the cardiovascular intensive care unit. J Thorac Cardiovasc Surg 2022; 163: 10961104. DOI: 10.1016/j.jtcvs.2021.02.098.CrossRefGoogle ScholarPubMed
Nissen, AP, Nguyen, S, Abreu, J, Nguyen, TC. The first 5 years: building a minimally invasive valve program. J Thorac Cardiovasc Surg 2019; 157: 19581965. DOI: 10.1016/j.jtcvs.2018.10.037.CrossRefGoogle ScholarPubMed
Sutton, P, McFaul, C, Vimalachandran, D, Johnson, M, McNally, S. Who’s really in charge in the operating theatre? Bulletin 2012; 94: 354355. DOI: 10.1308/147363512X13448516927468.CrossRefGoogle Scholar
Li, T, P. Sethi, S. A review of dynamic stackelberg game models. Dyn Syst Ser B 2017; 22: 125159. DOI: 10.3934/dcdsb.2017007.Google Scholar
Sadanand, V. Economics of epilepsy surgery. Ann Indian Acad Neurol 2014; 17: 120. DOI: 10.4103/0972-2327.128685.CrossRefGoogle ScholarPubMed
Capraro, V, Di Paolo, R, Perc, et al. Language-based game theory in the age of artificial intelligence. J R Soc Interface 2024; 21. DOI: 10.1098/rsif.2023.0720.CrossRefGoogle ScholarPubMed
Fenton, KN. Ethics of resource allocation to congenital heart surgery in variable-resource contexts. AME Surg J 2022; 2: 21- 51. DOI: https://doi.org/10.21037/asj.CrossRefGoogle Scholar
Hardin, G. The tragedy of the commons. The population problem has no technical solution; it requires a fundamental extension in morality. Science 1968; 162: 12431248.CrossRefGoogle ScholarPubMed
Sohn, AH, Schwartz, JM, Yang, KY, Jarvis, WR, Guglielmo, BJ, Weintrub, PS. Risk factors and risk adjustment for surgical site infections in pediatric cardiothoracic surgery patients. Am J Infect Control 2010; 38: 706710. DOI: 10.1016/j.ajic.2010.03.009.CrossRefGoogle ScholarPubMed
Wilson, T, Bevan, G, Gray, M, Day, C, McManners, J. Developing a culture of stewardship: how to prevent the tragedy of the commons in universal health systems. J R Soc Med 202: 255261. DOI: 10.1177/0141076820913421.Google Scholar
National adult cardiac surgery audit - NICOR. Available at: https://www.nicor.org.uk/wp-content/uploads/2023/06/10633_NICO Google Scholar
Crossland, DS, Ferguson, R, Magee, A et al. Consultant staffing in UK congenital cardiac services: a 10-year survey of leavers and joiners. Open Heart 2021; 8: e001723. DOI: 10.1136/openhrt-2021-001723.CrossRefGoogle ScholarPubMed
Burt, BM, ElBardissi, AW, Huckman, RS et al. Influence of experience and the surgical learning curve on long-term patient outcomes in cardiac surgery. J Thorac Cardiovasc Surg 2015; 150: 10611068. DOI: 10.1016/j.jtcvs.2015.07.068.CrossRefGoogle ScholarPubMed
Giles, JA. Surgical training and the european working time directive: the role of informal workplace learning. Int J Surg 2010; 8: 179180. DOI: 10.1016/j.ijsu.2010.01.011.CrossRefGoogle ScholarPubMed
West, D, Codispoti, M, Graham, T. The european working time directive and training in cardiothoracic surgery in the United Kingdom. The Surgeon 2007; 5: 8185. DOI: 10.1016/S1479-666X(07)80058-8.CrossRefGoogle ScholarPubMed
Abdel Shafi, AM, Sheikh, AM, Awad, WI. Comparison of cardiothoracic surgical training before and during the COVID-19 pandemic in the United Kingdom. JTCVS Open 2021; 7: 394410. DOI: 10.1016/j.xjon.2021.07.004.CrossRefGoogle ScholarPubMed
Smelt, JLC, Phillips, S, Hamilton, C et al. Simulator teaching of cardiopulmonary bypass complications: a prospective, randomized study. J Surg Educ 2016; 73: 10261031. DOI: 10.1016/j.jsurg.2016.05.009.CrossRefGoogle ScholarPubMed
Porras, D, Brown, DW, Rathod, R et al. Acute outcomes after introduction of a standardized clinical assessment and management plan (SCAMP) for balloon aortic valvuloplasty in congenital aortic stenosis. Congenit Heart Dis 2013; 15: 316325.Google Scholar
Rathod, RH, Jurgen, B, Hamershock, RA et al. Impact of standardized clinical assessment and management plans on resource utilization and costs in children after the arterial switch operation. Congenit Heart Dis 2017; 28: 768776.CrossRefGoogle Scholar
Rathod, RH, Farias, M, Friedman, KG et al. A novel approach to gathering and acting on relevant clinical information: SCAMPs. Congenit Heart Dis 2010; 23: 343353.CrossRefGoogle Scholar
Van der Linde, D, Konings, EEM, Slager, MA et al. Birth prevalence of congenital heart disease worldwide. J Am Coll Cardiol 2011; 58: 22412247. DOI: 10.1016/j.jacc.2011.08.025.CrossRefGoogle ScholarPubMed
Musa, Nl, Hjortdal, V, Zheleva, B et al. The global burden of cardiac disease. Cardiol Young 2017; 27: S3S8. DOI: 10.1017/S1047951117002530.CrossRefGoogle Scholar
Vervoort, D, Zheleva, B, Jenkins, KJ, Dearani, JA. Children at the heart of global cardiac surgery: an advocacy stakeholder analysis. World J Pediatr Congenit Heart Surg 2021; 12: 4854. DOI: 10.1177/2150135120955189.CrossRefGoogle ScholarPubMed
Grimes, CE, Henry, JA, Maraka, J, Mkandawire, NC, Cotton, M. Cost-effectiveness of surgery in low- and middle-income countries: a systematic review. World J Surg 2013; 38: 252263. DOI: 10.1007/s00268-013-2243-y.CrossRefGoogle Scholar
Nair, SM, Zheleva, B, Dobrzycka, A, Hesslein, P, Sadanandan, R, Kumar, RK. A population health approach to address the burden of congenital heart disease in Kerala, India. Glob Heart 2021; 16: 71. DOI: 10.5334/gh.1034.CrossRefGoogle ScholarPubMed
Hasan, BS, Rasheed, MA, Wahid, A, Kumar, RK, Zuhlke, L. Generating evidence from contextual clinical research in low- to middle income countries: a roadmap based on theory of change. Front Pediatr 2021; 9: 9. DOI: 10.3389/fped.2021.764239.CrossRefGoogle ScholarPubMed
Glasgow, RE, Vogt, TM, Boles, SM. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am J Public Health 1999; 89: 13221327. DOI: 10.2105/ajph.89.9.1322.CrossRefGoogle ScholarPubMed
Miller, HE, Fraz, F, Zhang, J et al. Abortion bans and resource utilization for congenital heart disease: a decision analysis. Obstet Gynecol 2023;142: 652659. DOI: 10.1097/AOG.0000000000005291.Google ScholarPubMed
Breban, R, Vardavas, R, Blower, S. Mean-field analysis of an inductive reasoning game: application to influenza vaccination. Phys. Rev E 2007; 76: DOI: 10.1103/PhysRevE.76.031127.CrossRefGoogle ScholarPubMed