A significant group of patients after surgical reconstruction of the right ventricular outflow tract, especially with using a transannular patch, need several re-interventions during their lifetime. Percutaneous pulmonary valve implantation is an alternative to surgical replacement of dysfunctional grafts. We present a case of percutaneous pulmonary valve implantation into the proximal part of a single right pulmonary artery with simultaneous dilation of the distal part.
A 16-year-old boy (55 kg) with tetralogy of Fallot (severe multilevel obstruction with hypoplastic left pulmonary artery) underwent right-sided Blalock-Taussig shunt (3rd week of life) followed by a total correction, including a transannular patch and bilateral pulmonary artery enlargement (14th month of life).
Over the years of observation, the patient remained asymptomatic. However, due to recurrent respiratory infections, a chest CT scan was performed at 12 years of age. The study showed a dilated right ventricular outflow tract and proximal part of the main pulmonary artery with tight narrowing in the distal part of the right pulmonary artery, the left lung with reduced volume and aeration, and an absent left pulmonary artery. (Fig. 1a, Supplementary Video S1).
Echocardiogram showed mild tricuspid valve regurgitation, with a maximal gradient of 37 mmHg, significant pulmonary valve regurgitation, and severe right pulmonary artery narrowing in the distal part with maximal gradient of 29 mmHg.
Two years later (at the age of 14), the diagnostic cardiac catheterisation visualised an enlarged right ventricular outflow tract (30 mm) at the level of the transannular calcified patch with significant regurgitation. The minimal diameter of the proximal part of right pulmonary artery was 21 mm. A significant stenosis in the distal part of the right pulmonary artery, at the site of previous Blalock-Taussig shunt, was also noted. Complete obstruction of the left pulmonary artery was confirmed with numerous aorto-pulmonary collaterals to the left lung. An aortogram confirmed the course of the distal part right pulmonary artery under the aortic arch, between the enlarged ascending and descending aorta. Hemodynamic measurements are included in the Supplementary Table T1.
The patient was referred to us at the age of 15 years. At a multidisciplinary meeting, the decision was made to perform a distal right pulmonary artery dilation and attempt a percutaneous pulmonary valve implantation into the proximal right pulmonary artery.
Initial angiography performed during the first stage of treatment showed narrowing of the distal right pulmonary artery just prior to take-off of dilated lobar branches (Fig. 1b, Supplementary movie 1). A 39 mm Cheatham Platinum stent (NuMed) mounted on a 20 mm Balloon in Balloon catheter (Numed) was implanted to the distal narrowing of the right pulmonary artery and dilatated with 22 × 20 mm high-pressure balloon (Atlas Gold, Bard). After excluding coronary compression, a landing zone was prepared with a 45 mm covered Cheatham Platinum stent, mounted on a 24 mm Balloon in Balloon catheter. To avoid compression on the dilated aortic root, the stent was implanted in the proximal part of right pulmonary artery, in a supra-pulmonary position (Fig. 1c).
After four months, the second stage of the treatment was performed. Fluoroscopy at the beginning of cardiac catheterisation showed significant fractures and anterior-posterior compression of the Cheatham Platinum stent in the distal part of right pulmonary artery. Mild fractures were also noted in the proximal stent (Fig. 1d). For that reason, another 34 mm Cheatham Platinum stent mounted onto a 20 mm Balloon in Balloon catheter was implanted into the distal right pulmonary artery and the proximal stent was reinforced with a 45 mm Cheatham Platinum stent delivered on a 22 mm Balloon in Balloon catheter. Appropriate preparation of a landing zone was confirmed angiographically, and the Melody valve (Medtronic) was subsequently implanted on a 22 mm Ensemble delivery system (Medtronic) (Fig. 1e, f; Supplementary video S1). Final haemodynamic results were summarised in Supplementary Table T1.
Follow-up fluoroscopy at three (Fig. 2a, b) and eight months (Fig. 2c, d) after implantation showed unchanged proximal stents and the Melody valve, except for the distal stents, which had mild anterior-posterior flattening, without new fractures. Transthoracic echocardiogram showed good function of the implanted valve with trivial central regurgitation.
Discussion
The standard percutaneous pulmonary valve implantation procedure has been well described. Reference Fiszer, Dryżek and Szkutnik1–Reference Morgan, Kothandam and Promphan3 In situations where valve implantation in the pulmonary position is suboptimal due to the wide right ventricular outflow tract, close proximity to a coronary artery or potential compression of the aortic root, percutaneous pulmonary valve implantation in supra-pulmonary position may be an alternative solution. Reference Góreczny, Eicken and Ewert4–Reference Qureshi, Krasuski and Prieto6 In the presented patient with discontinuity of the left pulmonary artery, a long segment of proximal right pulmonary artery was available for valve positioning. This location allowed for avoiding compression on the dilated aortic root and its straight, tubular course reduced the risk of stents embolisation. However, due to the lack of a sufficient grip of the stent, it was left for endothelialisation along with obtaining a stable landing zone for subsequent valve introduction. Reference Esmaeili, Khalil and Behnke-Hall7,Reference Cardoso, Ansari, Garcia, Sandhu, Brinster and Piazza8
Stenting of the distal part of right pulmonary artery was challenging considering the possibility of covering lobar branches, as well as cranially pulling the artery by the neonatal shunt and its subaortic course with dynamic forces leading to anterior-posterior compression. Reference McElhinney, Marshall and Schievano9,Reference McElhinney, Bergersen and Marshall10 The latter concerns turned out to be valid immediately at the beginning of the second stage of cardiac catheterisation when isocentre was set up and initial fluoroscopy was performed.
Implantation of additional stents provided significant improvement in diameters, which was confirmed in follow-up fluoroscopy. A slight ovalization of the distal stents raises concerns over longer capability of Cheatham Platinum stent withstanding compression from the ascending and descending aorta. Alternatively, stents with higher radial force and a pulmonary valve based on a stronger frame would have provided better long-term durability.
Conclusions
Percutaneous branch pulmonary valve implantation may be considered in selected patients as the less invasive alternative to the surgical treatment of right ventricular outflow tract dysfunction. When stents are placed in a pulmonary artery coursing under the aortic arch, higher risk of fracture should be acknowledged. Repeated fluoroscopy enables detection of stent damage, which may be successfully addressed with implantation of additional stents.
Supplementary material
The supplementary material for this article can be found at https://doi.org/10.1017/S104795112300416X.
Acknowledgements
To Anna Grondalski from Pomeranian Medical University for editing the text.
Financial support
This research received no specific grant from any funding agency, commercial, or not-for-profit sectors.
Competing interests
One author is a consultant for Medtronic.