Published online by Cambridge University Press: 22 February 2018
Microvascular dysfunction in hypertrophic cardiomyopathy has been associated with poor clinical outcome. Several studies have demonstrated a reduced perfusion reserve proportional to the magnitude of the hypertrophy. We investigated the utility of stress perfusion cardiac MRI to detect microvascular dysfunction in children with hypertrophic cardiomyopathy.
From January 2016 to January 2017, 13 patients, with a mean age of 15.3 years, with hypertrophic cardiomyopathy underwent regadenoson stress perfusion cardiac MRI (1.5-T Siemens Aera). A single-shot, T1-weighted saturation recovery gradient echo was used for first-pass perfusion in a multiple-slices group, including three short-axis slices and one four-chamber slice. Coronary vasodilatory stress was achieved using bolus injection of regadenoson (lexiscan 0.4 mg/5 ml) and dynamic perfusion during rest and stress performed by administering 0.05 mmol/kg of gadolinium contrast agent (gadoteridol) injected at a rate of 3.5 ml/s, followed by assessment of viability using two-dimensional phase-sensitive inversion recovery of the entire myocardium.
All patients completed protocols with no interruptions. In all, seven patients developed perfusion defects after the administration of regadenoson. Asymmetric septal hypertrophy was the most common pattern of hypertrophic cardiomyopathy (n=4) in those with abnormal perfusion. A total of four patients with perfusion defects had a maximum wall thickness <30 mm. The finding of perfusion defects in areas without late gadolinium enhancement in some of our patients indicates that gadolinium enhancement by itself could underestimate the true extension of microvascular disease. Out of seven patients, five patients with positive stress cardiac MRI have undergone implantable cardioverter defibrillator placement based on current guidelines.
Regadenoson stress cardiac MRI is feasible and clinically valuable in paediatric patients. It is particularly effective in unmasking abnormal myocardial perfusion in the presence of microvascular dysfunction in children with hypertrophic cardiomyopathy.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.