Published online by Cambridge University Press: 24 January 2022
Ventricular septal defect is the most common CHD, leading to pulmonary hypertension. Significantly lower 25-hydroxyvitamin D level was reported in children with CHD compared with healthy controls. The current study aimed to investigate the correlation between 25-hydroxyvitamin D level and pulmonary hypertension in children with ventricular septal defect.
A cross-sectional study was conducted on ventricular septal defect paediatric patients from January to June, 2019. Serum 25-hydroxyvitamin D was measured using electrochemiluminescence. Pulmonary hypertension was defined as mean pulmonary artery systolic pressure > 20 mmHg for children >3 months of age at sea level, measured by Doppler echocardiography.
From forty-four subjects, the majority of the subjects were female (56.8%) with normal nutritional status and perimembranous ventricular septal defect. Bivariate analysis showed that 25-hydroxyvitamin D level was associated with pulmonary hypertension (p < 0.01), type and size of ventricular septal defect (p = 0.02), and heart failure (p < 0.01). Higher 25-hydroxyvitamin D level was correlated with better nutritional status (p = 0.04, r = 0.26), and lower 25-hydroxyvitamin D level was correlated with the occurence of perimembranous ventricular septal defect (p = 0.01, r = −0.39), larger defect size (p < 0.01, r = −0.70), history of pneumonia (p = 0.02, r = −0.31), and heart failure (p < 0.01, r = −0.64). Subjects with 25-hydroxyvitamin D deficiency had prevalence ratio of 24.0 times for pulmonary hypertension. Higher pulmonary artery pressure was correlated to the occurence perimembranous ventricular septal defect (p = 0.01, r = 0.47), larger defect size (p < 0.01, r = 0.78), history of pneumonia (p = 0.01, r = 0.38), and heart failure (p < 0.01, r = 0.75).
Children with ventricular septal defect who had low 25-hydroxyvitamin D level posed a higher risk of having pulmonary hypertension.